
powered by

EnginSoft SpA - Via della Stazione, 27 - 38123 Mattarello di Trento | P.I. e C.F. IT00599320223

AN AERAULIC TOOLBOX FOR XCOS

Authors: M. Venturin

Keywords: Aeraulic system; Heating, Ventilation, Air Conditioning (HVAC);
Scilab; Xcos; Modelica

Abstract: The aim of this paper is to show the possibilities offered by
Scilab/Xcos to model and simulate aeraulic and HVAC systems. In
particular we develop a new Xcos module combined with the use of
Modelica language to show how aeraulic systems can be modeled
and studied. In this paper we construct a reduced library composed
by few elements: hoods, pipes and ideal junctions. The library can be
easily extended to obtain a more complete toolbox. The developed
library is tested on a simple aeraulic circuit.

Contacts info@openeering.com

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

An aeraulic toolbox for Xcos

www.openeering.com page 2/11

1. Introduction

The study of aeraulic systems plays today an import role for maintaining adequate indoor air
quality and thermal comfort. Moreover, studying and optimizing aeraulic systems can reduce
energy consumption in buildings due, for example, to heating and cooling or to drying/humidifying
control systems.

Progress in airflow analysis made it possible to design building ventilation quantitatively and
qualitatively. For this kind of analysis, the main primary thermal-fluid parameters under
consideration are velocity, turbulence, temperature and humidity.

Airflow problems in buildings can be treated at various levels depending on the different stages of
the design process.

The two main categories of fluid flow analysis are:

 macroscopic air flow in which methods are based on modeling the air flow in building
including heating, ventilating and air-conditioning (HVAC) systems as a collection of finite-
size control volumes which leads to differential equations with lumped mass parameters;

 microscopic air flow or computational fluid dynamic (CFD) where methods are based on a
continuum (spatial and time) approach that provides detailed descriptions of the flow, heat
and mass transport processes which leads to partial differential equations.

Here we focus on the first category; the aim of this paper is to develop an aeraulic systems toolbox
in Scilab/Xcos for macroscopic air flow analysis. For sake of simplicity, the system under
consideration is composed of a limited number of blocks. In particular the following blocks will be
presented:

 pipes;

 hoods;

 fans;

 and ideal junctions.

In further studies, the developed library can be straightforward extended with other resistive
elements like bends, elbows or cross-sectional flow area changes or it can be extended with the
development of new elements like valves, orifices and tanks.

The computation toolbox is developed in the Scilab/Xcos engineering environment. An additional
requirement concerns the mathematical modeling approach via Model-based design. The adopted
strategy is based on the use of the Modelica language that reflects more closely the visual
structure of simulated circuits.

Moreover, the use of Modelica language allows the possibility to develop independent libraries of
physical components, which are easy to re-use due to this separation from the simulation package.

The paper is organized as follows. First we present the basic modeling strategy, then the
constitutive laws of the network elements and after we present an application of the developed
library to simulate an aeraulic circuit.

An aeraulic toolbox for Xcos

www.openeering.com page 3/11

2. Library modeling

In this section we describe the basic library modeling approach. The Modelica developed package
is named “Aeraulics” and it is contained in the file “Aeraulics.mo”.

The implementation of the toolbox is done in Scilab/Xcos through the use Modelica features. The
first step is to identify through and across system variables and the use of the “passive sign
convention1” for all elements. For our problem we choose:

 the volumetric flow rate [m3/s] as the through variable;

 the pressure [Pa] as the across variable.

This is implemented in the connector class named “Pin”:

connector Pin

 Real p "[Pa] pressure";

 flow Real q "[m^3/s] volumetric flow";

end Pin;

Next, since all library elements have two pins, we develop a partial model class named “TwoPin”:

partial model TwoPin

 Pin air_p, air_n;

 Real q, p;

equation

 q = air_p.q;

 air_n.q = -q;

 p = air_p.p - air_n.p;

end TwoPin;

which is very useful since it simplifies writing all the following constitutive laws.

The previous class implements the basic conservation laws for a two pins element:

Flux of the element = Flux element at the input node

 = - Flux element at the output node

and

Pressure drop = Pressure at the input node

 – Pressure at the output node

1 In the “user convention” the through variable enters the positive terminal of a component (in Scilab is denoted by the black square).

An aeraulic toolbox for Xcos

www.openeering.com page 4/11

3. Element constitutive laws and properties

In this section we summarize the constitutive laws and properties that have been used to develop
the toolbox.

3.1. Air properties

Air properties are common to almost all elements and, hence, are treated as constants in the
library. Here we list the air properties that are used in the constitutive laws of aeraulic elements:

 air density [kg/m3];

 air kinematic viscosity [m2/s];

 minimum volumetric flow [m3/s].

The minimum volumetric flow is used as a numerical trick for better convergence of models. In
particular, it useful to linearize the constitutive laws when values are close to zero.

The library constants are defined as follows:

package Constants "Air fluid constants"

 constant Real rho = 1.205 "[kg/m^3] air density";

 constant Real nu = 1.268e-005 "[m^2/s] air kinematic viscosity";

 constant Real qmin = 1e-3 "[m^3/s] minimum volumetric flow";

end Constants;

3.2. Generic resistive elements

The mathematical model of a generic resistive element is the basis of all the other elements (like
bend, hood, elbow, pipe, …) since it describes a generic aeraulic resistance. The pressure drop
caused by the resistance is computed by loss coefficients that are generally provided in catalogs or
manuals. See for example I.E. Idelchik and M. O. Steinberg, Handbook of Hydraulic resistance,
Jaico Publishing House, 2011.

The pressure drop equation reads as follows:

where

 is the pressure drop [Pa];

 is the volumetric flow rate [m3/s];

 is the loss coefficient that depends on the resistive element [-];

 is the cross section area of the elements [m2];

 is the air fluid density [kg/m3].

Some limitations are used to obtain this simplified formula. For a more accurate modeling, this
equation can be improved considering the regime of the fluid that depends on the local Reynolds
number and temperature effects on fluid density. Moreover, is not generally constant but
depends on local Reynolds number. We recall that the purpose of this tutorial is not to give a
detailed mathematical formulation of the considered problem but to show the possibilities offered
by Scilab to the aspect of the mathematical modeling of the physical system. For more real-case
applications the interested reader can contact the Openeering team.

An aeraulic toolbox for Xcos

www.openeering.com page 5/11

As an example in the following figure we plot the pressure drop as a function of the volumetric
flow rate of a resistive element with , m2 (resistive pipe with a circular diameter

of 40 cm) and density kg/ m3.

Figure 1: Example of pressure drop in a generic element.

3.2.1. Resistive pipe

A resistive pipe is modeled as a generic resistive element where the loss coefficient is given as

where

 is the length of the pipe [m];

 is the hydraulic diameter [m];

 is the Darcy friction factor [-];

 is the shape cross section factor which is equal to for circular cross section pipe [-];

 is the element Reynolds number [-];

 is the volumetric flow rate [m3/s];

 is the cross section area of the elements [m2];

 is the kinematic viscosity [m2/s].

 is limited by the relation where is computed from the constant , this limit
guarantees a more robust behavior of models.

The default values are in our case:

 shape cross section factor [-];

 hydraulic diameter [m];

 pipe cross section area [m2] which corresponds to a diameter of 40 [cm];

 pipe length [m].

As an example in the following figure we plot the pressure drop as a function of the volumetric

flow rate of a resistive pipe long 10 m, cross section area m2 (circular cross section

area with a diameter of 40 cm) and kinematic viscosity m2/s.

An aeraulic toolbox for Xcos

www.openeering.com page 6/11

Figure 2: Example of pressure drop in a resistive pipe.

The Modelica implementation is done in the class “Pipe”:

model Pipe "Pipe"

 extends TwoPin;

 parameter Real Ks = 64 "[-] shape cross section area";

 parameter Real DH = 0.4 "[m] cross section hydraulic diameter";

 parameter Real A = 0.1257 "[m^2] cross section area";

 parameter Real L = 1 "[m] pipe length";

 Real REmin "[-] minimum local Reynolds number";

 Real REloc "[-] local Reynolds number";

 Real REeff "[-] used Reynolds number";

 Real f "[-] Darcy friction factor";

 Real K "[-] loss coefficient";

protected

 constant Real rho = Aeraulics.Constants.rho;

 constant Real nu = Aeraulics.Constants.nu;

 constant Real qmin = Aeraulics.Constants.qmin;

equation

 REmin = (qmin * DH) / (A * nu);

 REloc = (q * DH) / (A * nu);

 REeff = if REloc < REmin then REmin else REloc;

 f = Ks / REeff;

 K = (f * L) / DH;

 p = (K * rho) / (2.0 * A * A) * q * abs(q);

end Pipe;

3.2.2. Hood

Hood element is a particular case of resistance and hence it has the same formula for the pressure
drop, which is equal to:

.

For the system described above the value of is considered to be constant.

In our implementation we use a linearized version of the formula when the value is

.

An aeraulic toolbox for Xcos

www.openeering.com page 7/11

The default values used in our case are:

 loss coefficient [-];

 hood pipe cross section area [m2] which corresponds to a diameter of 40 [cm].

The Modelica implementation is done in the class “Hood”:

model Hood "Hood"

 extends TwoPin;

 parameter Real K = 0.65 "[-] loss coefficient";

 parameter Real A = 0.1257 "[m^2] cross section area";

 Real Kmin;

protected

 constant Real rho = Aeraulics.Constants.rho;

 constant Real qmin = Aeraulics.Constants.qmin;

equation

 Kmin = K * qmin;

 p = if abs(q) < qmin then (Kmin * rho) / (2.0 * A * A) * q else (K *

rho) / (2.0 * A * A) * q * abs(q);

end Hood;

3.2.3. Ground

When composing a scheme, it is always necessary to have a reference element. In this case, our
reference element is the “ground element” that fixes the pressure at a given node. The equation for
the ground element is

.

The Modelica implementation is done in the class “Ground”:

model Ground "Ground, fix pressure"

 Pin air_p;

equation

 air_p.p = 0.0;

end Ground;

3.2.4. Fan element

Typically fan performance curves are provided by tabular value. Here we use a simplify version
based on an ideal flux generator in parallel with a resistive element. Moreover, in order to
guarantee that at the initial time everything is in equilibrium, we use a linear time variation for the
flux generator.

For more details, see the Modelica implementation in the class “Fan”:

model Fan "Fan"

 extends TwoPin;

 parameter Real qmax = 300.0 / 3600 "[m^3/s] max volumetric flow rate";

 parameter Real K = 10 "[-] loss coefficient";

 parameter Real timemax = 1 "[s] maximum time";

 Real q1;

An aeraulic toolbox for Xcos

www.openeering.com page 8/11

 Real q2;

 Real Klin;

protected

 constant Real qmin = Aeraulics.Constants.qmin;

equation

 q = q1 + q2;

 q1 = if time < timemax then qmax / timemax * time else qmax;

 Klin = K * qmin;

 p = if abs(q2) < qmin then Klin * q2 else K * q2 * abs(q2);

end Fan;

3.2.5. Pressure and Flux sensors

If we want to exchange data from Modelica to Scilab/Xcos two other blocks are necessary. The
first block is used to convert the across variable “pressure” to a Scilab/Xcos variable. The equation
of this element is

.

The second block is used to convert the through variable “volumetric flow” to a Scilab/Xcos
variable. The equation of this element is

.

The Modelica implementation is done in the classes “FluxSensor”:

model FluxSensor

 extends TwoPin;

equation

 p = 0.0;

end FluxSensor;

and “PressureSensor”:

model PressureSensor

 extends TwoPin;

equation

 q = 0.;

end PressureSensor;

3.2.6. Junctions

In our simplified model, all junctions are considered as ideal. This means that there is not loss of
pressure in the junctions. Hence it is not necessary to develop new elements with particular
configurations since Xcos generate the conservation of law for each connected nodes.

4. Example

The developed library is tested in the following example. The problem under consideration consists
of three hoods with a unique fan. The object is to study the pressure and flow distribution into the
circuit.

An aeraulic toolbox for Xcos

www.openeering.com page 9/11

Figure 3: The aeraulic problem in the Xcos scheme

Figure 4: Numerical results

As results we plot time evolution of the fluxes through the hoods and the fan.

5. Conclusion

Here, we have developed a Scilab/Xcos toolbox for aeraulic simulation. The toolbox will be
extended in the future by providing other elements.

6. References

[1] I.E. Idelchik and M. O. Steinberg, Handbook of Hydraulic resistance, Jaico Publishing House,
2011.

An aeraulic toolbox for Xcos

www.openeering.com page 10/11

Appendix A – Library description

In the following table we report all the developed elements of the aeraulic library.

Element Required parameters Xcos element

Pipe

 : Shape cross section factor [m]

 (default)

 : Hydraulic diameter [m]

 (default)

 : Cross section area [m2]

 (default)

 : Pipe length [m];

 (default)

Hood

 : Loss coefficient [-]

 (default)

 : Cross section area [m2]

 (default)

Fan

 : Loss coefficient of parallel resistance [-]

 (default)

 : Maximum flux [m3/s]

 (default)

 : Time at which the max is reached [s]

 (default)

Ground —

Pressure sensor —

Flux sensor —

An aeraulic toolbox for Xcos

www.openeering.com page 11/11

Appendix B – Software installation and testing

The “Aeraulic system toolbox” is available to registered users only. For downloading the library
visit:

http://www.openeering.com/registered_users_area

Registration is free and automatic.

To load the library into the Xcos environment type

--> exec loader.sce

from the main directory. The new set of palette is loaded in your Xcos system.

Figure 5: The Aeraulic library in Xcos

Open the Xcos model file "airSystemTest.xcos" and run it. Remember that to run an Xcos

model with Modelica blocks, a C compiler should be installed in your system. Check if a compiler is

available in your system with the Scilab command "haveacompiler()".

Then plot the data using the function "airSystemPlotData.sce".

http://www.openeering.com/registered_users_area

