ENGINEERING

A PROFESSIONAL

powered by E(N)GIN

This Scilab tutorial is dedicated to the study of a linear quadratic regulator for an
inverted pendulum based on optimal control theory. In this tutorial the reader will
learn how to develop a controller for an inverted pendulum starting from the
equations of motion and how to use the animated plots in Scilab/Xcos.

y oy r r r

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. @ ®®@

Step 1: Problem description

In this tutorial we use Scilab to develop a controller that maintains a rod in
its vertical position (unstable position). In our example, the rod is hinged
on a support that allows only one type of lateral movement.

As reported in the figure on the right, the inverted pendulum is composed
by a vertical rod (homogeneous rod with length [, and mass M,) hinged
on a support rod (homogeneous rod with length [; and mass M,). The
vertical rod is in an orthogonal plane with respect to the moving base
(rotational joint).

In our experiment, we suppose to know (at each time step) the support
angle 6, of the moving base and the angle 6, of the vertical rod.
Moreover, the angle 6, is the only parameter in which we can act to
control the entire system by using a DC motor.

Vertical rod

~_

Moving base

01

Motor

A schematic drawing of an inverted pendulum with a moving base.

A Scilab Tutorial On An Inverted Pendulum Www.openeering.com page 2/32

This tutorial is particularly challenging and is the first Openeering tutorial
with five puffins.

Since the comprehension of this tutorial is demanding and some concepts
of Scilab programming are taken for granted, we highly recommend the
reader to download the entire source code and Xcos schemes from the
registered user area.

Unlike the previous tutorials, in this case the source code should be used
as a support documentation material. Source codes and Xcos schemes
should be read together with these pages.

Problem description and System equations 3-7
In this tutorial the following topics are covered: N.on-Imear syst.em Sellliffoly §-12
Linear-quadratic regulator 13- 20
e Problem description and system equations; Solving self-erecting problem 2124
)) Plotting animations in Scilab and Xcos 25-27
* Non-linear system solution; Conclusions and exercises 28-31

e Linear-quadratic regulator;
e Solving the self-erecting problem
e Plotting animations in Scilab and Xcos

o References and exercises

: All the simulations are done using

A Scilab Tutorial On An Inverted Pendulum page 3/32

The problem is described in term of the data 6, and 6, and their
6,and 6,.

For real applications, it is assumed that it is possible to have the absolute
position of the angle data 6, and 6, at each time step, while the angular
velocities 8,and 6, are recovered with an interpolation procedure.

The is the Voltage V(t) which can be applied to the
motor.

On the right, we report data and notations used throughout the text.

In this tutorial we use some shortcuts (reported on the right) in order to
simplify some equations. These shortcuts are used when managing the
equations using symbolic computations.

In this tutorial, all the are done using Maxima
which is an open source project for symbolic computations (see
References at Step 28).

Absolute angle position of the first rod 6, [rad];
Angular velocity of the first rod 6, [rad/s];
Absolute angle position of the second rod 6, [rad];
Angular velocity of the second rod 8,[rad/s];
Voltage control V (t) [V].

M, 12

Moment of inertia of the first rod J, = ==~ = 0.005 [kg m?;

=
Length of the first rod [; = 0.2 [m];
Mass of the second M, = 0.15 [kg];
Length of the second rod [, = 0.5 [m];

#
Moment of inertia of the second rod J, = M%lz [kg m2];
Motor torque K4 = 0.008;
Gear ratio N = 15;
Internal motor resistor R = 2.5 [Ohm].

a=J; + Ml

b =Ml l;;
¢ =]
dZ%Mzglz,
_ NKg,
==
N2KZ
f==4%
8§ = ac — b?;

A Scilab Tutorial On An Inverted Pendulum

page 4/32

To obtain the system equations we use the Euler-Lagrange approach. It is
necessary to define the kinetic energy T and the potential energy U with
respect to the generalized free coordinates of the system that, in our
case, are the angles and their derivatives.

In particular for the support rod we have:

e Potential energy: U; = 0;

« Kinetic energy: T, = %]1 62;
while for the vertical rod we have:

e Potential energy: U, = M,g -%cos 0,;

» Kinetic energy: T, = %]29'22 + %Mz(llél)2 + %lellzéléz cos 6, .
The kinetic energy T, can be obtained in an easy way using the Koenig’s
theorem since the rod is homogeneous, which gives

T, = %]Z,MCQZZ + %Mz((m + v, cos 6,)% + (v, sin 6,)%)

where J, y¢ is the inertia with respect to the center of mass M,, v; = 1,6,
and v, = %92. The J, can be express in terms of J, . using the theorem
of Huygens-Steiner which gives J, = J, yc + M,13.

The kinetic energy T, can also be obtained using integration procedure
over infinitesimal segments, i.e.

1! . . .
T, = Ef ’ [(xez cos 6, + llﬂl)z + (x8, sin 92)2] pS dx
0

where p is the density and S is the section area.

O *n‘[l"’]l"ll

o

o ﬂfg. .I'_g._ f_g

1292 COS (7'2

IQQQ sin 92

Ti.

Z’)H‘)

P

> 1,0,

A Scilab Tutorial On An Inverted Pendulum

page 5/32

Step 5: System equations

The Lagrangian of the system can be written as
L = T_U:(T1+T2)_(U1+U2)
1 . 1 . 1 . 1
= E(]l + le%)elz + 512022 + §M211129192 CoS 62 - EMzglz CosS 92

in the generalized coordinates 6, and 6, and generalized velocities 8,
and 6,.

The equations of motion are obtained using the Euler-Lagrange equation:

d (9L _ 0L _
dt \ dq dg

This expresses the equations starting from the system kinetic energy and
system potential energy.

The equations of motion are reported on the right (further details will be
presented in the following steps).

The nonlinear system of equations is:

.1 .. 1)
(J, + M,12)86, + > M1, cos 6, - Emzlllzeﬁ sin 8, = 1

.1 . 1
J,0; + ElellZB1 cos 6, — EMzglz sin 8, = 0

where:

e 1 isthe applied torque to the support rod;

M3

o |, = — is the momentum of inertia of the first rod;

M,l3 . . .
o J,= % is the momentum of inertia of the second rod.

A Scilab Tutorial On An Inverted Pendulum

www.openeering.com page 6/32

Details of the derivation of equations are reported here, while the Maxima
script we used for the symbolic computation is reported on the right.

For the first equations we have:

d oL 1 } 1 2
Ea_el = (]1 + M2112)91 + Elellzez CoS 62 _EMZZIZZ(BZ) Sin 62
oL _ .

6,

That corresponds exactly to the eql_a and eql_b of the Maxima script.

The sum of eql_a and eqgl_b gives the equation of motion where the free
variable is 0.

For the second equations we have:

d oL L1) 1 L
Fr = J,0, +5lell261 cos 9, —Elellzelez sin 6,
2
oL N 1 ,
6_622 —Elellzelez Sin 02 +EM2glz Sin 62

That corresponds exactly to the eq2_a and eq2_b of the Maxima script.
The sum of eq2_a and eg2_b gives the equation of motion where the free
variable is 9,.

Maxima script used to obtain the system equations:

Ul: 0;

omegal:
omega?:

/* Equations of motion */
thetal:
thetal2:

thetal (t);
theta2 (t);

diff (thetal, t);
diff (theta2,t);

/* Lagrangian derivation */

eql a: expand(diff (diff(L,omegal),t));
egl b: diff(L,thetal);
eql: eql a + eql b;

eg2 a: diff(diff (L, omega2),t)
eq2 b: expand(diff (L, theta2))
eq2: eqg2 a + eqg2 b;

/* Lagrangian of the system */
Tl: 1/2*J1*omegal”2;

T2: 1/2*J2*omega2”2 + 1/2*M2* (ll*omegal) "2 +
1/2*M2*11*12*omegal *omega2*cos (theta?2) ;
U2: M2*g*12/2*cos (theta2);
L: (T1+T2) -(U1+4U02);

’
’

A Scilab Tutorial On An Inverted Pendulum

page 7/32

Step 7. System equations

The applied torque is given by a DC motor which is controlled in voltage
V. This relation is typically written as:

The nonlinear complete model is:

.1 . 1 .2
V(t) N2K¢2, _ (]1 aF lei)el aF EMZIIIZOZ cos 0, — EMlelZOZ sin 0, =1

1
T(6) = NKyI(6) = NKy(V (0) — K¢91)E - NKd’T R 1

.1 . 1
J,0; + ElellZB1 cos 6, — EMzglz sin 8, = 0

where where

e N represents the gear ratio;
P g v NKG

* K is the torque constant that depends on the motor geometry; ©(0) = NKy "R R !t

e](t) is the current of the motor;

e V(t) is the voltage used to control the motor;

o K¢91 represents the counter electromotive force;

e Ris the resistor of the rotor winding. We now use the following notations for the nonlinear system

a-0,+b-0,cos Bz—b-éisin 0,=e-V(t)-f-0,
c-0,+b-8,cos 8, —d-sin 6, =0

where shortcuts notations are explained at step 3.

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 8/32

In order to solve the nonlinear system it is necessary to state the problem
in the form y(t) = f(t,y). This can be easy done since the system is
linear in 6, and 4,.

We obtain the following expressions using the Maxima script on the right.
The expressions for 6, and 6, are:

ceV(t) + bcsin(0,) 62 — bdcos(8,) sin(0,) — cfo;

e (b2 cos?(0,) — ac)
5 - b ecos(8,) V(t) + b2 cos(8,) sin(B,) 62 — a dsin(8,) — bf 6, cos(,)
z (b2 cos?(8,) — ac)
which leads the following of the system:
él = 91p
0, = 02p

ceV(t) + besin(B,) 05, — bdcos(8,) sin(8,) — cf by,
B (b2 cos?(8,) — ac)
b e cos(8,) V(t) + b?cos(8,) sin(6;) 6, — a dsin(8,) — bf 6y, cos(8,)
(b2 cos?(6,) — ac)

-
=
el

|

=2

N

e
|

: We always have (b? cos?(0,) — ac) # 0.

Maxima script used to obtain the expressions for 6, and 8,:

/* Non-linear system formulation */

eqnll : a*thetal pp + b*theta2 pp*cos(theta2)
b*theta2 p”2*sin(theta2) = (e*V - f*thetal p);
eqnl2 : b*thetal pp*cos(theta2) + c*theta2 pp -
d*sin (theta?2) = 0;

display(sol[1l]);
display(sol[2]);

sol: linsolve([egnll,eqnl2], [thetal pp,theta2 ppl);

A Scilab Tutorial On An Inverted Pendulum

page 9/32

// Inverted pendulum parameters

Step 9: Free evolution in Scilab Jl = 0.05; 11 = 0.2; M2 = 0.15; 12 = 0.5;
J2 M2*127~2/3; Kphi = 0.008; N = 15; R =

We now use previous equations to write our Scilab code. In this example
: _ : : // Derived data
Yve.study the free .evolut'lon (V(®) = 0) of the nonlinear syste'm.The sgluthn 3= J1 + M2F11°7; b = 1/0%M2*11%12; ¢ = J2;
is implemented in Scilab language where the numerical solution is d = 1/2*M2*g*12; e = N*Kphi/R; f = N"2*Kphi“2/R;
obtained using the ode Scilab function*. delta = a*c-b"2;

We study the problem using the initial conditions: function ydot=inv nl pend(t, y)
// The non-linear system inverted pendulum

6; = 0 // get variable

6, = 90° thetal = y(1); theta2 = y(2);

61 — 0 thetalp = y(3); theta2p = y(4);

. s2 = sin(theta2); c2 = cos(theta2?);

92 = 0 den = b"2*c2”2 - a*c;

. . vt = 0;

The obtained results are reported on the figure below. ydot = zeros(4,1);

ydot (1) = thetalp;

ydot (2) = thetalp;

ydot (3) = - (c*e*Vt + b*c*s2*thetaz2p”2-b*d*c2*s2-
c*f*thetalp) /den;

ydot (4) = (b*e*c2*Vt + b"2*c2*s2*thetalp”Z-a*d*s2-
b*f*thetalp*c2) /den;

endfunction

// Initial condition

y0 = [0;90*%%p1/180;0;01;
t = linspace(0,5000,2001)/1000;
a0] t0 = 0y
20.] // Solving the system
ol T T S sol = ode(y0, t0, t, inv nl pend);
0] ——
S — // Plotting of model data
002040808 1 12141618 2 2.22.?[52].62.8 3 32343638 94 424494648 5 p]_ot (t, so]_ (W ?’) /"'O" *] 80) ;
.) . p = get ("hdl");
Figure 1: Free evolution plot o.) — nont;
p. . = 3;
* Refer to the tutorial “Modeling in Scilab: pay attention to the right approach - Part xlabel ("t [s]"); ylabel("[°]");
1”7 for more information on how to model a physical system described by ODE legend (["S$\theta 1$";"S\theta 25"]);

using Scilab standard programming language.

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 10/32

The Xcos scheme that implements the previous system is available in the

Xcos file (see figure) and it uses the following blocks:
e AF ” constant for modeling the V(t) signal (equal to zero
in this case);
e A that models the nonlinear system (see step 11);
e AF ” block to split signals;
e A ” block for saving data to workspace that gives the

values of the angles to a variable named ;

[Scilab Multiple Values Request X

E Set ®oos buffer block
Size of buffer &000
Srilab variable name 5ol

Inhetit {no:0, yes:1) |0

All files are available for download in the Openeering registered users’
area. Again, we highly recommend downloading the source codes for a
better understanding of this tutorial.

Vi

)

t ¥
L o workspace|
> ol [5000]
s mux

A Scilab Tutorial On An Inverted Pendulum

page 11/32

Step 11: Nonlinear system block

The modeling of the nonlinear system block is reported on the right and

it uses the following basic blocks:

e Four integration blocks for recovering the angles starting from the

Expression:
~{c*e*ul + b*c*sin(ud)*USP2-b*d* cos (ud) “sin(ud)-c U (b2 cos (ud)3 - a*c)

angular accelerations;

e Two expression blocks that model nonlinearities. The two

xpression

expressions are exactly the two differential equations described in

step 8. i

“e*cos(ud)"ul + b2 cos(ud)*sin(ud)"us'2-a*d*sin(u4) b Pu3 cos(ud)/(b"2"cos(ud)2 - a*c)

Figure 4: The nonlinear system block

Step 12: Plot the results

Since the variable sol contains the results of the Xcos simulation, we can
plot the two angles 6,and 6, using the command:

‘ plot(sol.time, sol. *180/%pi)

300

280
260
240
220
200
120 -
160
140
120
100 -
=0+
50 o
a0 4
20

o4
20 4
-a0 4

Figure 5: Angles positions at time steps

rTrrrrrrrrrrrrrrrerrrrrrrrrrr T T T T T T T T T rTT
002040608 1 12141618 2 22242628 3 32343638 4 42444648 5

A Scilab Tutorial On An Inverted Pendulum www.openeering.com

page 12/32

It is possible to linearize the model around the point
9129229129.2:0

using small angle displacements and small velocity displacements having
the following approximations:

sin@ =~ 0 and cosf =~ 1.

This gives:

1
> MLyl

+ M, 13
]1 24 2

[2] =)

Hence we use the Maxima script on the right to obtain the state model
representation of the system:

éz __Mzgl

1
§M2l1l2

. 1 0 0
6, 0 1| 16, 0
6, K2N? 0, cKyN
A <z et SR |'V®
b, vt o] | by
SR OR
B

In system theory, this system is typically written in the from

xX=A-x+B-V.

Maxima script used to obtain the state model representation:

inverted pendulum in V*/
e : N*Kt/R;
f : N"2*Kt"2/R;

/* System */
/* tau = e*V - f*thetal p */
egl : a*thetal pp + b*theta2 pp =

sol: linsolve([eql,eqg2], [thetal pp,

/* Thetal pp processing */
resl : expand(rhs(sol[1l]))
eql theta2 factor (part(resl,2));
eql thetal p :
eql V : factor(part(resl,1));

/* Theta2 pp processing */
res2 : expand(rhs(sol[2]))
eq2_ theta2 factor (part(res2,2));
eq2 thetal p :
eq2 V : factor(part(res2,1));

/* Maxima script for obtaining state representation of an

e*V - f*thetal p;
eq2 : c*theta2 pp + b*thetal pp - d*theta2 = 0;

theta2 pp]l):;

factor (part(resl, 3));

factor (part(res2,3));

A Scilab Tutorial On An Inverted Pendulum

page 13/32

Step 14: Transfer functions and stability analysis

If we apply a Laplace transformation?*, it is possible to obtain the transfer

function (in terms of control variable 1)
_ 00 _ 00
Wi(s) = © and W,(s) = o
Hence, from the relations

a-s%0,(s) + b -s%0,(s) = 1(s)

b-s20,(s) +c-s5%0,(s)—d-0,(s)=0

Maxima script used to obtain the transfer functions:

we have ; . .
/* Maxima script for transfer functions */
5 d c , eql : a*s”2*thetal s + b*s”2*theta2 s = tau_s;
W, (s) _91(5) . cs®—d _ —5tsS eq2 : b*s”2*thetal s + c*s”2*theta2 s - d*theta2 s = 0;
1 - - 2 -
(s b ad
) as? [(C - 7) 52— d] _TSZ + s* sol: linsolve(legl,eqg2], [thetal s,theta2 s]);
and
b Wl s : rhs(sol[l])/tau_s;
92(5) -3 —b/5 W2 s : rhs(sol[2])/tau s;
W S) = = =
2() 7(s) b\ , da .
c——]s?—d ——+s
a)
2
Since % < ¢ the poles of the transfer function W, (s) are both reals and so
the system are unstable.
Note: It is left as an exercise to prove the same fact when the controller is
expressed in term of Voltage instead of torque applied.
*Refer to the tutorial “Introduction to Control Systems in Scilab” for more
information on state-space, transfer function representation and converting
methods.
A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 14/32

Step 15: Using the Scilab control toolbox

Here, in the right, we report the computation (in 7) using the Scilab control
toolbox CACSD.

The state equation is

x=A-x+B-u

with
0 o0 1 0 0
0O 0 o0 1 0
A=|o _bs_d 0 oflandB=| £
0o ¥ 00 -2

while the observer equation is
y=C-x+D-u

where

0 0 O

1 0 0] and D = [8]

cz[(l)

Note: It is left as an exercise to prove the same fact when the controller is

expressed in term of Voltage instead of torque applied.

// Inverted pendulum parameters

Jl = 0.05;

11 = 0.2

M2 = (

12 = 0

J2 = M2*12"2/3;

Kphi = 0.008;

N = 1

R =2
9

;
g5
g = 9.9;

// Derived data
a = Jl + M2*11"2;
b = 1/2*M2*11*12;
c = J2;

d = 1/2*M2*g*12;
e = N*Kphi/R;

f = N*"2*Kphi"2/R;
delta = a*c-b"2;

// Define system matrix (in tau)

A= [0010; 000 1; 0 -b*d/delta
01:

B = [0; 0; c/delta; -b/delta]

c = 000; 01 00];

D = [0;0];

/

/ State space
sl = syslin('c',A,B,C,D)
h = ss2tf(sl)

N

U

0;

’

0 a*d/delta 0

A Scilab Tutorial On An Inverted Pendulum

www.openeering.com

page 15/32

In optimal control theory, a linear-quadratic (LQ) regulator consists of
feedback controller of the form

u=Kx

that minimizes the following index of quality
] =f (xTQx + u"Ru)dt
0

where Q is a positive semi-definitive matrix and R is a positive definite
matrix. The Q matrix represents the weight associated with the state while
R represents the weight associated with the input.

Under these assumptions it is possible to find that:
K =—-R7'B"P
where P is the solution of the Riccati equation

ATP+PA—PBR'BTP+Q =0

In order to develop this kind of controller it is necessary to check its
controllability. The controllability means that for any t; > t, and for any
states x, and x, there exists an input u(t) such that the system is taken
from initial state x,(t,) to the final x,(t;). This allows the system to
converge towards the desire state since it is possible to place the poles of
the system everywhere in the complex plane.

The Scilab function used to compute the controller is

[K, X] = 1qr(PSys)

where:

e K : isthe Kalman gain such that A + BK is stable;

e P: is the stabilizing solution of the Riccati equation.

The P system is obtained using the following commands:

Q = ([r r L J) 7
R = 1;
nstates = 4;
Big = sysdiag(Q,R);
[w,wp] = fullrf (Big);
Cl=wp(:,)i
D12=wp (:,) ;
PSys = syslin(,A,B,C1,D12);
[K,P] = lgr (PSys)
(A+B*K)
where denotes the number of state variables.

A Scilab Tutorial On An Inverted Pendulum

page 16/32

Scilab script to detect controllability:

In order to develop a LQ regulator it is necessary to prove the system
controllability and hence the possibility to allocate the eigenvalues to your

preference. AB = [B, A*B, A*A*B, A*A*A*B]
rank (AB)
(AB)

Hence, it is necessary to check that

rank[B|AB|A?B|A3B] = 4

where
g g (1) (1) 0 Maxima script used to check the controllability of the system:
0
2 p2
A=]o _bd _CK¢N oland B = cKgN
8 5R 5R
ad K2 N2 bK 4N /* Controllability check */
0 5 ?R 0 T TR a0 : Kphi*N;
al : b*d/delta;
a2 : a*d/delta;
a5 : c/delta*Kphi*N/R
Using the Scilab and Maxima codes on the right, it easy to prove, that the a3 : a5 * a0;
. a6 : b/delta*Kphi*N/R;
rank is 4. ad : a6 * a0;

A : matrix([{o, o, 1, 01, [0, O, O, 11, [0, -al, -ab5*aol,
01, [0, a2, a6*a0O, 0]);

B : matrix([0], [0], [a5], [-a6]):;
R : addcol (B,A.B,A.(A.B),A. (A.(A.B)

. Itis left as an exercise to prove the same fact when the controller is A
detR : factor (expand (determinant (R)

)) i
)) s

expressed in term of torque applied instead of Voltage control.

A Scilab Tutorial On An Inverted Pendulum page 17/32

Step 18: LQ regulator summary

To put everything together, the development of a LQ regulator requires
computing the Kalman gain matrix. The complete Scilab code for the LQ
regulator is reported on the right.

M2*1272/3;

.5;

Nl

// Derived data

a =Jl + M2*1172; b = 1/2*M2*11*12;
The LQ regulator is computed using the Scilab function |qr which requires c =J2; d= 1/2*M2%g*12;

. . e = N*Kphi/R; f = N"2*Kphi”2?/R;
as input the state space representation of the system. delta — arc-bros

The lgr function computes the regulator associated to the L2 norm of z

/ e
(cost function) where A=100010; 000 1; 0 -b*d/delta -c/delta*f 0; 0
a*d/delta b/delta*f 0];
z=Cx+ Dju B [0; 0; c/delta*e; -b/delta*e]
C=1[100
D [

0; 010 01;

and
[x,uP‘-Q'[x,u] // Check contollability
3 cT AB = [B, A*B, A*A*B, A*A*A*B]
0= ;] -[C; Dyl rank (AB)
D1, spec (AB)
The computation of C; and D,, are done using the full rank factorization // LQ project
using the Scilab command fullrf. Q = diag([100,100,10,101); // Usual notations
x'Ox + u'Ru (4 states, 1 input)
R = 1;
Big = sysdiag(Q,R); // Now we calculate C1
and D12
nstates = 4;
[w,wp] = fullrf (Big);Cl=wp(:,l:nstates);D1l2=wp(:,) :
//[C1,D12]"'*[Cl,D12]=Big
P = syslin('c',A,B,C1,D12); // The plant
(continuous-time)
[K,X] = 1gr(P)
spec (A+B*K) // check stability

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 18/32

Step 19: LQ regulator in Xcos

The LQ regulator is here described using an Xcos scheme. The values of
K1, K2, K3 and K4 are given from the previous step.

In this configuration it is possible to study the system under noise

perturbation.

The context configuration parameters are:

// Inverted pendulum
Jl = 0.005; 11 = 0
M2 = 0.15; 12 = 0
Kphi = 0.008; N = 15

// Derived data
a = Jl + M2*11"2; D
d = 1/2*M2*g*12; e
delta = a*c-b"2;

// Initial condition
thetal = 90*%pi/180;

theta2 = 3*%pi/180;
thetal p = 0;
theta2 p = 0;

maxang = 0*%pi/180;

maxvel = 0;
initnoise = 100;

K= [10 120.5538
K1 = K(1);

K2 = K(2);

K3 = K(3);

K4 = K(4);

parameters
.2
LD J2 = M2*127°2/3;

; R=2.5 g=9.8;

= 1/2*M2*11*12; c = J2;

= N*Kphi/R; f = N*"2*Kphi"2/R;
s
// init. position
// init. position
// init. ang. vel.
// init. ang. vel.
5 7.5116657 21.523317]1;

o workspace|
sol [6000]

Random
generator

Random
generator

Random
generator

Figure 7: the entire Xcos scheme. With respect to step 10, the LQ

regulator has been added in the blue subsystem.

A Scilab Tutorial On An Inverted Pendulum

Www.openeering.com

page 19/32

As in step 12, we can now plot the two angles with the command:

‘M(sol. , sol. *180/%pi)

The initial configuration is in this case

6, = 90°
6, = 3°
6, = 0
0, 0

Note that, as already explained at the beginning of step 13, this regulator
works only for small perturbation of the angle 6, that represents the
position of the vertical rod.

As an exercise, try to change the initial configuration in the context
configuration parameters and see how the plot changes.

120
1104
1005/
90 4

80 4
70
604
50 -
40
30 -
20
10

=104
-20

U—\/

A Scilab Tutorial On An Inverted Pendulum

page 20/32

Step 21: Control for a self-erecting inverted pendulum

Now, we want to develop a new controller that takes the pendulum from
its stable position to the inverted, unstable position and then maintains
this configuration.

The idea is to control the moving rod, through the use of a PID regulator,
such that the moving rod is in an opposite direction with respect of the
pendulum. Then, when the pendulum reaches a prefixed threshold we
move from the PID regulator to the LQ regulator.

The full scheme is reported on the right. This scheme is composed by the
following main components:

e The nonlinear system block used to simulate the non-linear
system;

e The LOQ regulator block used to control the pendulum in the
vertical position;

e A PID controller used to take the pendulum from its stable
configuration to the unstable one;

e A controller switcher that chooses between the LQ regulator
and PID controller.

The two new blocks, the PID controller and the controller switcher, will be
described in the following steps.

PI_D regulator
with sat

Vi

Control switcher

o

a——

Monlinear system

o

LG regulator

o workspace
kol [12000]

Figure 9: Self-erecting controller for the pendulum (see file
inv_pend_se.zcos)

A Scilab Tutorial On An Inverted Pendulum

www.openeering.com

page 21/32

Step 22: Controller switcher
The controller switcher is based on the Scilab function inv_pend mode.

The idea is to move from a configuration to another checking the angle

andlusvemcny. function [mctrl]=inv pend mode (theta2, dtheta2);
// Select the mode of control to be applied

// 1 for trying to get vertical position

// 0 for maintain vertical position

7~
- W // unwrapping of thetaZl
\ - theta2u = unwrap (theta2);
A
é F?wﬁm: s) mctrl = 0;
~ 2 | RSN if (abs(theta2u) <= PositionThreshold) & (abs (dtheta2) <=
(2 P :
\=/ MODE VelocityThreshold) then
mctrl = 1;
J end
. . . if (abs(2*%pi - abs(theta2u)) <= PositionThreshold) &
Figure 10: Controller switcher (abs (dtheta2) <= VelocityThreshold) then
mctrl = 1;
end
endfunction

In the first part we move 6, such that 0 < 6, < 2 and then we check the Function b=unwrap (a);

aa = abs(a);
angle condition. Remember that the conditions that we want to control are k = floor((;a / (2%%pi));
0, = 0and 6, = 2m. if a > 0 then
b=a-2*k * %pi;
else

b=aa -2 * k * %pi;
b =2 * %pi - b;

end

endfunction

A Scilab Tutorial On An Inverted Pendulum Www.openeering.com page 22/32

Step 23: PID controller

The PID controller is used to moving rod is in an opposite way to direction + i \
of rising of the pendulum. [> E 1)

o
Several configurations of PID controllers exist in literature. Here, we use et
the following: Figure 12: PID scheme
U(s Cls
(s) E(s)) ¥(s)
>0 > >0 > —_—r>
* ' e
- T - T Control
M _Port
I Proportional st
lon - La
? Contral —
r——m{l_Port » (1)
T 4 Switch -
L 1 integral L L Control
Ti # s S
Figure 11: Scheme of our PID controller G
Don L
Control
[—mM_Port
In general, this configuration is characterized by the derivative term Td* s Derivative R
applied to the output. This controller is particularly useful when we prefer 1+TL*s —
looking for stability than tracking the reference signal.

T

Figure 13: Basic PI_D scheme

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 23/32

Step 24: Numerical results

Running the Xcos scheme at step 21 we obtain a figure in which we can
see the behavior of the controller. It is visible that the controller switches
after six seconds.

D
2 05
=
a
We can even plot the trend of the two angles 6, and 8, as we did in the 0
previous steps.
Using the command: 097 N — , ,
: | | SR 0 2 4 6 B 10 12 14 16 18 20
‘ plot(sol.time, sol. pi) Figure 14:Switch of the controller
we can plot the positions of the angles 6, and 6,. Even in this plot we may
see that, after 6 seconds, the rod is taken into its unstable vertical position .
and then controlled perfectly.)
300 -
250
200 \/
150
100 4
50 ,\[
Y
U_
1001 -
'150 T T T T T T T T T T T
o 1 2 3 4 5 & 7 8 9 10 11 12
Figure 15: Angles positions at time steps
A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 24/32

Step 25: Animations in Scilab

Plotting the animation of the moving pendulum, from its stable state to its
vertical position, would be useful in order to understand the entire
dynamic of our system. Scilab has the capability to plot animations and in
these last steps of the tutorial we will show how to use this capability.

First of all, we need to develop a new Scilab function that, starting for the
two angles 6, and 6, (in radians) as input arguments, plots the pendulum
for this configuration. Then, the idea is to store, in the user data field of
the figure, the handles of the two graphical objects and then update the
new coordinates of the rod points. The Scilab code on the right reports
only part of the source code of the inv_pend_anim.sci function.

Figure 16: A single frame of the animation. This plot is obtained with
the command inv_pend anim(1.8, 0)

function [yl_deg, y2 degl=inv pend anim(thetal, theta2)

yl_deg = thetal*180/%pi;
y2_deg theta2*1380/%pi;

// Model data should be inserted from a mask
11 = 0.2;
12 = 0.5;

f = findobj ("Tag", "ANIM ROD");

if £ == [] then

//Initialization

//download source code from Openeering.com
else

scf(f);
end

// Modify coordinates
f = findobj ("Tag", "ANIM ROD");
drawlater () ;

el = f. . ;

xvl = [0; 1ll*cos (thetal)];

yvl = [0; 1ll*sin(thetal)];

zvl = [0; O0];

// xsegs (xvl,yvl,zvl);

el. = [xvl, yvl, zvl];

e2 = £ . ;

xv2 = [ll*cos (thetal); ll*cos (thetal) -

12*sin (theta2) *cos (%pi/2 - thetal)];

[
(
[
12*sin (theta2) *sin (%pi/2 - thetal)];
[
g

yv2 = [ll*sin(thetal); ll*sin (thetal) +
zv2 = [0; 1l2*cos (theta2)];

// xsegs (xv2,yv2,zv2) ;

e2. = [xv2, yv2, zv2];

drawnow () ;

endfunction

A Scilab Tutorial On An Inverted Pendulum www.openeering.com

page 25/32

Step 26: Using the animation function in Xcos

To use the animation function as a block in Xcos, it is sufficient to open
one of the previous Xcos scheme and add a “SCIFUNC _BLOCK_ M”.

To connect the block with the Scilab function inv_pend anim.sci it is
sufficient to specify the number and type of input and output ports and the
function name as reported in the following figures.
. 0 Control switcher
‘ Set scifunc_block parameters 1/4 1
only reqular blocks supported e T
= al kol [12000]
01 MUX
D—@;';]
PI_D regulator

input ports sizes [1,1;1,1] wh st Nonlinezr system [Fy‘{lr],ym;],:ﬁv)end_amm(m u2)

output part sizes [1,1;1,1] i

input event ports sizes 0

output events ports sizes 0

initial continuous state 0

initial discrete state 0 \ LG regulator :

igu : Wi i [

pskem parameters vecter . Figure 19: The Xcos scheme with the animation block

initial firing vector (<0 for na firing) |[] (| nv p en d se an | m.zco S)

is block always active {0:no, 1:yes) |1 - o a

Figure 17: Specifying input and output ports

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 26/32

[Scilab Input Value Request

n Define Function which computes the autput
Enter Scilab instructions defining
¥1 (size: 1)
¥2 (size: 1)
as a functions of £,ul,u2,n_evi,

[¥1l,v2] = inv_pend anim(ul, uz)]

Before running the Xcos scheme, remember to load the function adding
the following command in the set context
menu.

Vou may enter here scilab instructions ko define symbolic parameters used in block definitions
using Scilab instructions,

These instructions are evaluated ance confirmed fi.e. vou dick on OK and every time the
diagram is loaded).

exec {"inv_pend_se_conf.sce",-1)

The animation results are reported on the right.

A Scilab Tutorial On An Inverted Pendulum

page 27/32

- y

Figure 21: Simulation results: Some images
The entire animation is available for download

Step 28: Exercise 1

Try to implement an unwrapping function that maps, using only Xcos
blocks, an input signal into the interval [0,27] and having = as mean

value (it maps 0 into).

On the right we propose an idea of the scheme and its result.

Figure 22: Xcos System (ex1.zcos)

A Scilab Tutorial On An Inverted Pendulum

Www.openeering.com

page 28/32

T T T T T T T T T T T T 1
o 1 2z 3 4 5 & F & 9 0 11 412 13 14 15 16 17 18 19 20
t

: Use the gquantization block.]

T S B e S s o e o o e e S e e A B e
o 1 2z 3 4 5 & F & 9 0 11 412 13 14 15 16 17 18 19 20

Starting from noised angle measures try to develop a recovery procedure
for the recovery of the derivative, i.e. if we kwon the angle at each time
step we want to know the velocity.

The idea is to use a high-pass filter with a unity gain. Try to complete the
following scheme adding the appropriate block in the empty block.
Solution is given in ex2.zcos.

A Scilab Tutorial On An Inverted Pendulum page 29/32

DURMMY

cLSS 144

1.2 4
14
nsa-
06 -
U4
03z
= 0
-0z
0.4
05
0z
Pl
124
144

T 71
0123456 78 910411213 141516 17 1819 2021 22 23 24 2526 27 2529 30

My i

Figure 24: Example of recovery strategy for the derivative of a signal 02l

T T 1T T T 1T T T 1T T T T T T T T T 1T T T T T T 11
6 7 B 910111212 141516 17 12 10 2021 22 22 24 25 26 27 28 20 30

Figure 25: Noise input and original signal

14
1.2

R
05+
U4
0z

-0z
0.4
06
-0.2 4

14
Az
44

T 1

T8 90111212 1415161718 10 20 21 2223 24 25 26 27 28 20 20
t

Figure 26: Example of recovery

@ -

T T T 7T
o1 224%5

Step 30: Concluding remarks and References

A Scilab Tutorial On An Inverted Pendulum Www.openeering.com page 30/32

In this tutorial we have presented a modeling approach for the control of
an inverted pendulum in Scilab/Xcos. The regulator is developing using
the Control System Toolbox available in Scilab known as CACSD while
the simulation is done using Xcos.

All the symbolic manipulations of the expressions and equations have
been obtained using Maxima,; the software is free and available at [3].

It is trivial that the system is only a study version which can be improved
in several ways, for example improving the PID parameters or
development a new strategy algorithm.

1. Scilab Web Page: Available:

2. Openeering:

3. Maxima:

® walaxima 12.04.0[non salvato® |

@B o A 00 w 2]
(*01) thetallt) r
(812)
[$02) thetaZ(t)
(813)
d e
3) —thetal(r)
ae
(#14)
a
) ——theta2(t)
ac
(415)
z
— thetal(t)| 71
at ¢ J
(8ie)
(%o6) D
ra (a ofa 2 a \2
1112(- thetai(e)|cos(theraz(t)) |- theeaz(t) M7z 11%|- theval(e)| 17 [7 mm“_:nJ 72
e) T et \d ¢
2z 2 2
g12
) N \ fa N Sfa ¥ (a E fa 2
11122 thetai(£)] cos(thetaz(t))|—= thetazte)|m2 : 183 Zchatarce)] 22 [tnerazce)| 72 [thotare)| o2
lax) (o)™ g12costtherazieniz ac a:) \a e
+ - +
B B E z
(a2 fa 2
I112cos(thets(£))|— thetaZ(£)|M2 1112 sinithetadl t))|— thetaztt)| a2 2
L e?), ae b, o 42 a?
5010 +11 thetal(t)| M2+ — thetal(t)|s1
: ae? las?
(8111)
so1l) D
12 S | d ¢
1112 c0a(thetaZ(2))|——thetaZ(D)| M2 1117 sinfthetaz{) thetazit)| #2 ‘ v f s
lae? / \d e ks d
+11 thetal(r)| M2+ — thetal(r)|J1
z lae? lae

Fronts

Main directory

A Scilab Tutorial On An Inverted Pendulum

page 31/32

http://www.scilab.org/
http://www.openeering.com/
http://maxima.sourceforge.net/

To report bugs or suggest improvements please contact the Openeering STttt . ,
Animation.png : Animation of the inv. pend.
team. exl.zcos : Solution of the ex. 1
ex2.zcos : Solution of the ex. 2
inv_pend.zcos : Inv. pend. in Xcos
; inv _pend anim.sci : Inv. pend. animation
WWW.Openeering.com inv_pend anim.zcos : Inv. pend. with animation in Xcos
inv pend ctrl.zcos : Inv. pend. with regulator
inv_pend ctrl anim.zcos : Inv. pend. with anim. and regulator
inv_pend ganim.sce : Post-processing animation
inv_pend mode.sci : Inv. pend. mode function
inv pend nl scilab.sce : Inv. pend. in Scilab
inv_pend se.zcos : Inv. pend. self-erecting
inv_pend se_anim.zcos : Inv. pend. self-erecting with anim.
inv_pend se conf.sce : Inv. pend. self-erecting conf.
inv pend se data : Inv. pend. self-erecting solut.
invpend check.sce : Inv. pend. development
. license.txt : The license file
Thank you for your attention, system maxima.txt : Maxima scripts

Manolo Venturin, Silvia Poles

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 32/32

http://www.openeering.com/

