
 

www.openeering.com 

powered by

 

CONTROLLER FOR AN INVERTED PENDULUM 

This Scilab tutorial is dedicated to the study of a linear quadratic regulator for an 
inverted pendulum based on optimal control theory. In this tutorial the reader will 
learn how to develop a controller for an inverted pendulum starting from the 
equations of motion and how to use the animated plots in Scilab/Xcos.  

Level 
     

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. 

 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 2/32 

Step 1: Problem description 

In this tutorial we use Scilab to develop a controller that maintains a rod in 

its vertical position (unstable position). In our example, the rod is hinged 

on a support that allows only one type of lateral movement. 

 

As reported in the figure on the right, the inverted pendulum is composed 

by a vertical rod (homogeneous rod with length  and mass ) hinged 

on a support rod (homogeneous rod with length  and mass ). The 

vertical rod is in an orthogonal plane with respect to the moving base 

(rotational joint). 

 

In our experiment, we suppose to know (at each time step) the support 

angle  of the moving base and the angle  of the vertical rod. 

Moreover, the angle  is the only parameter in which we can act to 

control the entire system by using a DC motor. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

A schematic drawing of an inverted pendulum with a moving base. 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 3/32 

Step 2: Roadmap 

This tutorial is particularly challenging and is the first Openeering tutorial 

with five puffins.  

Since the comprehension of this tutorial is demanding and some concepts 

of Scilab programming are taken for granted, we highly recommend the 

reader to download the entire source code and Xcos schemes from the 

registered user area.  

 

Unlike the previous tutorials, in this case the source code should be used 

as a support documentation material. Source codes and Xcos schemes 

should be read together with these pages. 

 

In this tutorial the following topics are covered: 

 Problem description and system equations; 

 Non-linear system solution; 

 Linear-quadratic regulator; 

 Solving the self-erecting problem 

 Plotting animations in Scilab and Xcos 

 References and exercises 

 

 

 

 

Note: All the simulations are done using Scilab 5.4. 

 

 
 

Descriptions Steps 

Problem description and System equations 3 - 7 

Non-linear system solution 8 - 12 

Linear-quadratic regulator 13 - 20 

Solving self-erecting problem 21 – 24 

Plotting animations in Scilab and Xcos 25 - 27 

Conclusions and exercises 28 - 31 

 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 4/32 

Step 3: Problem data  

The problem is described in term of the angles data  and  and their 

angular velocities and . 

For real applications, it is assumed that it is possible to have the absolute 

position of the angle data  and  at each time step, while the angular 

velocities and  are recovered with an interpolation procedure. 

 

The control variable is the Voltage  which can be applied to the 

motor. 

 

On the right, we report data and notations used throughout the text. 

 

In this tutorial we use some shortcuts (reported on the right) in order to 

simplify some equations. These shortcuts are used when managing the 

equations using symbolic computations. 

 

In this tutorial, all the symbolic computations are done using Maxima 

which is an open source project for symbolic computations (see 

References at Step 28). 

 

 
 
 
Problem measure variables: 

 Absolute angle position of the first rod  [rad]; 

 Angular velocity of the first rod  [rad/s]; 

 Absolute angle position of the second rod  [rad]; 

 Angular velocity of the second rod [rad/s]; 

 Voltage control  [V]. 
 
 
 
Problem data: 

 Moment of inertia of the first rod  [kg m
2
]; 

 Length of the first rod  [m]; 

 Mass of the second  [kg]; 

 Length of the  second rod  [m]; 

 Moment of inertia of the second rod  [kg m
2
]; 

 Motor torque ; 

 Gear ratio ; 

 Internal motor resistor  [Ohm]. 
 
 
 
Shortcuts: 

 ; 

 ; 

 ; 

 ; 

 ; 

 ; 

 ; 
 
 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 5/32 

Step 4: System equations 

To obtain the system equations we use the Euler-Lagrange approach. It is 

necessary to define the kinetic energy  and the potential energy  with 

respect to the generalized free coordinates of the system that, in our 

case, are the angles and their derivatives. 

In particular for the support rod we have: 

 Potential energy: ; 

 Kinetic energy: ; 

while for the vertical rod we have: 

 Potential energy: ; 

 Kinetic energy: . 

The kinetic energy  can be obtained in an easy way using the Koenig’s 

theorem since the rod is homogeneous, which gives 

 

where  is the inertia with respect to the center of mass ,  

and . The  can be express in terms of  using the theorem 

of Huygens-Steiner which gives . 

 

The kinetic energy  can also be obtained using integration procedure 

over infinitesimal segments, i.e. 

 

where  is the density and  is the section area. 

 

 
Some adopted conventions 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 6/32 

Step 5: System equations 

The Lagrangian of the system can be written as 

 

in the generalized coordinates  and  and generalized velocities  

and . 

 

The equations of motion are obtained using the Euler-Lagrange equation:  

 

This expresses the equations starting from the system kinetic energy and 

system potential energy. 

 

The equations of motion are reported on the right (further details will be 

presented in the following steps). 

 

 

 

 

 

 

 

The nonlinear system of equations is: 
 
 

 

 

 
 
 
 
 
where: 
 

  is the applied torque to the support rod; 
 
 

  is the momentum of inertia of the first rod; 

 
 

  is the momentum of inertia of the second rod. 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 7/32 

Step 6: System equations (details of derivation) 

Details of the derivation of equations are reported here, while the Maxima 

script we used for the symbolic computation is reported on the right. 

 

For the first equations we have: 

 

 

 

 

 

That corresponds exactly to the eq1_a and eq1_b of the Maxima script. 

The sum of eq1_a and eq1_b gives the equation of motion where the free 

variable is . 

For the second equations we have: 

 

 

 

 

That corresponds exactly to the eq2_a and eq2_b of the Maxima script. 

The sum of eq2_a and eq2_b gives the equation of motion where the free 

variable is . 

 

 
Maxima script used to obtain the system equations: 
 

/* Equations of motion */ 

theta1: theta1(t); 

theta2: theta2(t); 

 

omega1: diff(theta1,t); 

omega2: diff(theta2,t); 

 

/* Lagrangian of the system */ 

T1: 1/2*J1*omega1^2; 

U1: 0; 

T2: 1/2*J2*omega2^2 + 1/2*M2*(l1*omega1)^2 + 

1/2*M2*l1*l2*omega1*omega2*cos(theta2); 

U2: M2*g*l2/2*cos(theta2); 

L: (T1+T2) -(U1+U2); 

 

/* Lagrangian derivation */ 

eq1_a: expand(diff(diff(L,omega1),t)); 

eq1_b: diff(L,theta1); 

eq1: eq1_a + eq1_b; 

 

 

eq2_a: diff(diff(L,omega2),t); 

eq2_b: expand(diff(L,theta2)); 

eq2: eq2_a + eq2_b; 

 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 8/32 

Step 7: System equations 

The applied torque is given by a DC motor which is controlled in voltage 

. This relation is typically written as: 

 

 

 

where 

  represents the gear ratio; 

  is the torque constant that depends on the motor geometry; 

  is the current of the motor; 

  is the voltage used to control the motor; 

  represents the counter electromotive force; 

  is the resistor of the rotor winding. 

 

 

 

 

 

 

 

 

The nonlinear complete model is: 

 

 
where 
 

 

 
 
 
 
 
 
We now use the following notations for the nonlinear system 
 

 

 
where shortcuts notations are explained at step 3. 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 9/32 

Step 8: Nonlinear system solution 

In order to solve the nonlinear system it is necessary to state the problem 

in the form . This can be easy done since the system is 

linear in  and . 

 

We obtain the following expressions using the Maxima script on the right. 

The expressions for  and  are: 

 

 

 

which leads the following state representation of the system: 

 

 

 

 

 

Note: We always have . 

 

 

Maxima script used to obtain the expressions for  and : 
 

/* Non-linear system formulation */ 

eqnl1 : a*theta1_pp + b*theta2_pp*cos(theta2)  - 

b*theta2_p^2*sin(theta2) = (e*V - f*theta1_p); 

eqnl2 : b*theta1_pp*cos(theta2) + c*theta2_pp - 

d*sin(theta2) = 0;  

 

sol: linsolve([eqnl1,eqnl2],[theta1_pp,theta2_pp]); 

 

display(sol[1]); 

display(sol[2]); 

 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 10/32 

Step 9: Free evolution in Scilab 

We now use previous equations to write our Scilab code. In this example 

we study the free evolution ( ) of the nonlinear system. The solution 

is implemented in Scilab language where the numerical solution is 

obtained using the ode Scilab function*. 

We study the problem using the initial conditions: 

 

The obtained results are reported on the figure below. 

 
Figure 1: Free evolution plot 

 

* Refer to the tutorial “Modeling in Scilab: pay attention to the right approach - Part 
1” for more information on how to model a physical system described by ODE 
using Scilab standard programming language. 

 // Inverted pendulum parameters 

J1 = 0.05; l1 = 0.2; M2 = 0.15; l2 = 0.5; 

J2 = M2*l2^2/3; Kphi = 0.008; N = 15; R = 2.5; g = 9.8;  

 

// Derived data 

a = J1 + M2*l1^2; b = 1/2*M2*l1*l2; c = J2;  

d = 1/2*M2*g*l2; e = N*Kphi/R; f = N^2*Kphi^2/R; 

delta = a*c-b^2; 

 

function ydot=inv_nl_pend(t, y) 

// The non-linear system inverted pendulum 

// get variable 

theta1 = y(1); theta2 = y(2); 

theta1p = y(3); theta2p = y(4); 

s2 = sin(theta2); c2 = cos(theta2); 

den = b^2*c2^2 - a*c; 

Vt = 0; 

ydot = zeros(4,1); 

ydot(1) = theta1p; 

ydot(2) = theta2p; 

ydot(3) = -(c*e*Vt + b*c*s2*theta2p^2-b*d*c2*s2-

c*f*theta1p)/den; 

ydot(4) = (b*e*c2*Vt + b^2*c2*s2*theta2p^2-a*d*s2-

b*f*theta1p*c2)/den; 

endfunction 

 

// Initial condition 

y0 = [0;90*%pi/180;0;0]; 

t = linspace(0,5000,2001)/1000; 

t0 = 0; 

// Solving the system 

sol = ode(y0, t0, t, inv_nl_pend); 

 

// Plotting of model data 

plot(t, sol(1:2,:)/%pi*180); 

p = get("hdl"); 

p.children.mark_mode = "on"; 

p.children.thickness = 3; 

xlabel("t [s]"); ylabel("[°]"); 

legend(["$\theta_1$";"$\theta_2$"]); 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 11/32 

Step 10: Free evolution using Xcos 

The Xcos scheme that implements the previous system is available in the 

Xcos file inv_pend.zcos (see figure) and it uses the following blocks: 

 

 A “CONST_m” constant for modeling the  signal (equal to zero 

in this case); 

 A superblock that models the nonlinear system (see step 11); 

 A “MUX” block to split signals; 

 A “TOWS_c” block for saving data to workspace that gives the 

values of the angles to a variable named sol; 

 

 
Figure 2: data to Scilab workspace configuration 

 
 

All files are available for download in the Openeering registered users’ 

area. Again, we highly recommend downloading the source codes for a 

better understanding of this tutorial. 

 

 

 

 

 
Figure 3: The Xcos scheme for free evolution 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 12/32 

Step 11: Nonlinear system block 

The modeling of the nonlinear system block is reported on the right and 

it uses the following basic blocks: 

 Four integration blocks for recovering the angles starting from the 

angular accelerations; 

 Two expression blocks that model nonlinearities. The two 

expressions are exactly the two differential equations described in 

step 8. 

 

 

 
Figure 4: The nonlinear system block 

 

Step 12: Plot the results 

Since the variable sol contains the results of the Xcos simulation, we can 

plot the two angles and  using the command: 

 

plot(sol.time, sol.values*180/%pi) 

 

 

 

 
 

 
Figure 5: Angles positions at time steps 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 13/32 

Step 13: Linearized model 

It is possible to linearize the model around the point 

 

using small angle displacements and small velocity displacements having 

the following approximations: 

 and . 

This gives: 

 

Hence we use the Maxima script on the right to obtain the state model 

representation of the system: 

 

 

In system theory, this system is typically written in the from  

. 

 

 

 

Maxima script used to obtain the state model representation: 
 
 

/* Maxima script for obtaining state representation of an 

inverted pendulum in V*/ 

e : N*Kt/R; 

f : N^2*Kt^2/R; 

 

/* System */ 

/* tau = e*V - f*theta1_p */ 

eq1 : a*theta1_pp + b*theta2_pp = e*V - f*theta1_p; 

eq2 : c*theta2_pp + b*theta1_pp - d*theta2 = 0;  

 

sol: linsolve([eq1,eq2],[theta1_pp,theta2_pp]); 

 

/* Theta1_pp processing */ 

res1 : expand(rhs(sol[1])); 

eq1_theta2 : factor(part(res1,2)); 

eq1_theta1_p : factor(part(res1,3)); 

eq1_V : factor(part(res1,1)); 

 

/* Theta2_pp processing */ 

res2 : expand(rhs(sol[2])); 

eq2_theta2 : factor(part(res2,2)); 

eq2_theta1_p : factor(part(res2,3)); 

eq2_V : factor(part(res2,1)); 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 14/32 

Step 14: Transfer functions and stability analysis 

If we apply a Laplace transformation*, it is possible to obtain the transfer 

function (in terms of control variable ) 

 and . 

Hence, from the relations 

 

 

 

we have 

 

and  

 

 
 

Since  the poles of the transfer function  are both reals and so 

the system are unstable. 
Note: It is left as an exercise to prove the same fact when the controller is 
expressed in term of Voltage instead of torque applied. 
 
 

*Refer to the tutorial “Introduction to Control Systems in Scilab” for more 

information on state-space, transfer function representation and converting 

methods. 

 

Maxima script used to obtain the transfer functions: 

 

/* Maxima script for transfer functions */ 

eq1 : a*s^2*theta1_s + b*s^2*theta2_s = tau_s; 

eq2 : b*s^2*theta1_s + c*s^2*theta2_s - d*theta2_s = 0; 

 

sol: linsolve([eq1,eq2],[theta1_s,theta2_s]); 

 

W1_s : rhs(sol[1])/tau_s; 

W2_s : rhs(sol[2])/tau_s; 

 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 15/32 

Step 15: Using the Scilab control toolbox 

Here, in the right, we report the computation (in ) using the Scilab control 

toolbox CACSD. 

 

The state equation is  

 

with  

 and  

while the observer equation is 

 

where  

 and . 

 

 

 

 

Note: It is left as an exercise to prove the same fact when the controller is 

expressed in term of Voltage instead of torque applied. 

 

 
 

 

// Inverted pendulum parameters 

J1 = 0.05; 

l1 = 0.2; 

M2 = 0.15; 

l2 = 0.5; 

J2 = M2*l2^2/3; 

Kphi = 0.008; 

N = 15; 

R = 2.5; 

g = 9.8; 

 

// Derived data 

a = J1 + M2*l1^2; 

b = 1/2*M2*l1*l2; 

c = J2; 

d = 1/2*M2*g*l2; 

e = N*Kphi/R; 

f = N^2*Kphi^2/R; 

delta = a*c-b^2; 

 

// Define system matrix (in tau) 

A = [0 0 1 0; 0 0 0 1; 0 -b*d/delta 0 0; 0 a*d/delta 0 

0]; 

B = [0; 0; c/delta; -b/delta] 

C = [1 0 0 0; 0 1 0 0]; 

D = [0;0]; 

 

// State space 

sl = syslin('c',A,B,C,D) 

h = ss2tf(sl) 

 

 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 16/32 

Step 16: Optimal control 

In optimal control theory, a linear-quadratic (LQ) regulator consists of 

feedback controller of the form 

 

that minimizes the following index of quality 

 

where  is a positive semi-definitive matrix and  is a positive definite 

matrix. The  matrix represents the weight associated with the state while 

 represents the weight associated with the input. 

 

Under these assumptions it is possible to find that: 

 

where  is the solution of the Riccati equation 

 

 

In order to develop this kind of controller it is necessary to check its 

controllability. The controllability means that for any  and for any 

states  and  there exists an input  such that the system is taken 

from initial state  to the final . This allows the system to 

converge towards the desire state since it is possible to place the poles of 

the system everywhere in the complex plane. 

 

 
The Scilab function used to compute the controller is LQR: 

 

[K, X] = lqr(PSys) 

where: 

 

 K : is the Kalman gain such that  is stable; 

 

 P: is the stabilizing solution of the Riccati equation. 

 

 

 

The P system is obtained using the following commands: 

Q = diag([100,100,1,1]);  // (4 states, 1 input) 

R = 1; 

nstates = 4; 

Big = sysdiag(Q,R);       // Now we calculate C1 and D12 

[w,wp] = fullrf(Big); 

C1=wp(:,1:nstate); 

D12=wp(:,nstate:$);   //[C1,D12]'*[C1,D12]=Big 

PSys = syslin('c',A,B,C1,D12);  // The sys (cont-time) 

[K,P] = lqr(PSys) 

spec(A+B*K)                  // check stability 

where nstate denotes the number of state variables. 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 17/32 

Step 17: Controllability proof 

In order to develop a LQ regulator it is necessary to prove the system 

controllability and hence the possibility to allocate the eigenvalues to your 

preference. 

 

Hence, it is necessary to check that 

 

where  

 and . 

 

Using the Scilab and Maxima codes on the right, it easy to prove, that the 

rank is 4. 

 

 

Note: It is left as an exercise to prove the same fact when the controller is 

expressed in term of torque applied instead of Voltage control. 

 

 

 

 

Scilab script to detect controllability: 

 

// Check controllability 

AB = [B, A*B, A*A*B, A*A*A*B] 

rank(AB) 

spec(AB) 

 

 

 

Maxima script used to check the controllability of the system: 

 

/* Controllability check */ 

a0 : Kphi*N; 

a1 : b*d/delta; 

a2 : a*d/delta; 

a5 : c/delta*Kphi*N/R 

a3 : a5 * a0; 

a6 : b/delta*Kphi*N/R; 

a4 : a6 * a0; 

 

A : matrix([0, 0, 1, 0], [0, 0, 0, 1], [0, -a1, -a5*a0, 

0], [0, a2, a6*a0, 0]); 

B : matrix([0], [0], [a5], [-a6]);  

R : addcol(B,A.B,A.(A.B),A.(A.(A.B))); 

detR : factor(expand(determinant(R))); 

 

 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 18/32 

Step 18: LQ regulator summary 

To put everything together, the development of a LQ regulator requires 

computing the Kalman gain matrix. The complete Scilab code for the LQ 

regulator is reported on the right. 

 

The LQ regulator is computed using the Scilab function lqr which requires 

as input the state space representation of the system. 

The lqr function computes the regulator associated to the L2 norm of  

(cost function) where 

 

and 

 

. 

 
The computation of  and  are done using the full rank factorization 
using the Scilab command fullrf. 

  

// Inverted pendulum data 

J1 = 0.005; l1 = 0.2; 

M2 = 0.15;  l2 = 0.5;  J2 = M2*l2^2/3; 

Kphi = 0.008; N = 15; R = 2.5;  

g = 9.8; 

 

// Derived data 

a = J1 + M2*l1^2;  b = 1/2*M2*l1*l2; 

c = J2;  d = 1/2*M2*g*l2; 

e = N*Kphi/R;  f = N^2*Kphi^2/R; 

delta = a*c-b^2; 

 

// Define system matrix (in tau) 

A = [0 0 1 0; 0 0 0 1; 0 -b*d/delta -c/delta*f 0; 0 

a*d/delta b/delta*f 0]; 

B = [0; 0; c/delta*e; -b/delta*e] 

C = [1 0 0 0; 0 1 0 0]; 

D = [0;0]; 

 

// Check contollability 

AB = [B, A*B, A*A*B, A*A*A*B] 

rank(AB) 

spec(AB) 

 

// LQ project 

Q = diag([100,100,10,10]);            // Usual notations 

x'Qx + u'Ru (4 states, 1 input) 

R = 1; 

Big = sysdiag(Q,R);                // Now we calculate C1 

and D12 

nstates = 4; 

[w,wp] = fullrf(Big);C1=wp(:,1:nstates);D12=wp(:,$:$);   

//[C1,D12]'*[C1,D12]=Big 

P = syslin('c',A,B,C1,D12);        // The plant 

(continuous-time) 

[K,X] = lqr(P) 

spec(A+B*K)                        // check stability 

 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 19/32 

Step 19: LQ regulator in Xcos 

The LQ regulator is here described using an Xcos scheme. The values of 

K1, K2, K3 and K4 are given from the previous step. 

In this configuration it is possible to study the system under noise 

perturbation. 

 

The context configuration parameters are: 

// Inverted pendulum parameters 

J1 = 0.005;   l1 = 0.2; 

M2 = 0.15;    l2 = 0.5; J2 = M2*l2^2/3; 

Kphi = 0.008; N = 15;   R = 2.5; g = 9.8; 

 

// Derived data 

a = J1 + M2*l1^2;  b = 1/2*M2*l1*l2;  c = J2; 

d = 1/2*M2*g*l2;   e = N*Kphi/R;      f = N^2*Kphi^2/R; 

delta = a*c-b^2; 

 

// Initial conditions 

theta1 = 90*%pi/180;    // init. position 

theta2 =  3*%pi/180;    // init. position 

theta1_p = 0;           // init. ang. vel. 

theta2_p = 0;          // init. ang. vel. 

 

maxang = 0*%pi/180; 

maxvel = 0; 

initnoise = 100; 

 

K = [10.    120.55385    7.5116657    21.523317]; 

 

K1 = K(1); 

K2 = K(2); 

K3 = K(3); 

K4 = K(4); 
 

 
 

 
Figure 6: the LQ regulator in an Xcos scheme 

 
Figure 7: the entire Xcos scheme. With respect to step 10, the LQ 

regulator has been added in the blue subsystem. 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 20/32 

Step 20: Results 

As in step 12, we can now plot the two angles with the command: 

 

 

plot(sol.time, sol.values*180/%pi) 

 

 

The initial configuration is in this case 

 

 

 
 
Note that, as already explained at the beginning of step 13, this regulator 
works only for small perturbation of the angle  that represents the 
position of the vertical rod. 
 
 
 
 
 

As an exercise, try to change the initial configuration in the context 

configuration parameters and see how the plot changes. 

 
 
 
 

 

   

 
Figure 8: Angles positions at time steps 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 21/32 

Step 21: Control for a self-erecting inverted pendulum 

Now, we want to develop a new controller that takes the pendulum from 

its stable position to the inverted, unstable position and then maintains 

this configuration. 

 

The idea is to control the moving rod, through the use of a PID regulator, 

such that the moving rod is in an opposite direction with respect of the 

pendulum. Then, when the pendulum reaches a prefixed threshold we 

move from the PID regulator to the LQ regulator. 

 

The full scheme is reported on the right. This scheme is composed by the 

following main components: 

 The nonlinear system block used to simulate the non-linear 

system; 

 The LQ regulator block used to control the pendulum in the 

vertical position; 

 A PID controller used to take the pendulum from its stable 

configuration to the unstable one; 

 A controller switcher that chooses between the LQ regulator 

and PID controller. 

 

The two new blocks, the PID controller and the controller switcher, will be 

described in the following steps. 

 

 

 

 
Figure 9: Self-erecting controller for the pendulum (see file 

inv_pend_se.zcos) 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 22/32 

Step 22: Controller switcher 

The controller switcher is based on the Scilab function inv_pend_mode. 

The idea is to move from a configuration to another checking the angle 

and its velocity. 

 

 

Figure 10: Controller switcher 

 

 

In the first part we move  such that  and then we check the 

angle condition. Remember that the conditions that we want to control are 

 and . 

 

 

 

 

 

 

 

 

 

function [mctrl]=inv_pend_mode(theta2, dtheta2); 

// Select the mode of control to be applied 

// 1 for trying to get vertical position 

// 0 for maintain vertical position 

 

// unwrapping of theta2 

theta2u = unwrap(theta2); 

 

mctrl = 0; 

if (abs(theta2u) <= PositionThreshold) & (abs(dtheta2) <= 

VelocityThreshold) then 

    mctrl = 1; 

end 

 

if (abs(2*%pi - abs(theta2u)) <= PositionThreshold) & 

(abs(dtheta2) <= VelocityThreshold) then 

    mctrl = 1; 

end 

endfunction 

 

function b=unwrap(a); 

aa = abs(a); 

k = floor(aa / (2*%pi)); 

if a > 0 then 

   b = a - 2 * k * %pi; 

else 

   b = aa - 2 * k * %pi;  

   b = 2 * %pi - b; 

end 

endfunction 

 
 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 23/32 

Step 23: PID controller 

The PID controller is used to moving rod is in an opposite way to direction 

of rising of the pendulum. 

 

Several configurations of PID controllers exist in literature. Here, we use 

the following: 

 
Figure 11: Scheme of our PID controller 

 

In general, this configuration is characterized by the derivative term 

applied to the output. This controller is particularly useful when we prefer 

looking for stability than tracking the reference signal. 

 

 
 
 

 
Figure 12: PID scheme 

 
 
 

 
Figure 13: Basic PI_D scheme 

 
 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 24/32 

Step 24: Numerical results 

Running the Xcos scheme at step 21 we obtain a figure in which we can 

see the behavior of the controller. It is visible that the controller switches 

after six seconds. 

 
 

We can even plot the trend of the two angles  and  as we did in the 

previous steps. 

Using the command: 

plot(sol.time, sol.values*180/%pi) 

we can plot the positions of the angles  and . Even in this plot we may 

see that, after 6 seconds, the rod is taken into its unstable vertical position 

and then controlled perfectly. 

 
 

 
Figure 14:Switch of the controller 

     
 

 
Figure 15: Angles positions at time steps 

        
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 25/32 

Step 25: Animations in Scilab 

Plotting the animation of the moving pendulum, from its stable state to its 

vertical position, would be useful in order to understand the entire 

dynamic of our system. Scilab has the capability to plot animations and in 

these last steps of the tutorial we will show how to use this capability. 

 

First of all, we need to develop a new Scilab function that, starting for the 

two angles  and  (in radians) as input arguments, plots the pendulum 

for this configuration. Then, the idea is to store, in the user_data field of 

the figure, the handles of the two graphical objects and then update the 

new coordinates of the rod points. The Scilab code on the right reports 

only part of the source code of the inv_pend_anim.sci function. 

 

 
Figure 16: A single frame of the animation. This plot is obtained with 

the command inv_pend_anim(1.8, 0) 

  
function [y1_deg, y2_deg]=inv_pend_anim(theta1, theta2) 

 

y1_deg = theta1*180/%pi; 

y2_deg = theta2*180/%pi; 

 

// Model data should be inserted from a mask 

l1 = 0.2; 

l2 = 0.5; 

L = 0.4 

 

f = findobj("Tag", "ANIM_ROD"); 

 

if f == [] then 

    //Initialization 

    //download source code from Openeering.com 

else 

    scf(f); 

end 

 

// Modify coordinates 

f = findobj("Tag", "ANIM_ROD"); 

drawlater(); 

e1 = f.user_data.e1; 

xv1 = [0; l1*cos(theta1)]; 

yv1 = [0; l1*sin(theta1)]; 

zv1 = [0; 0]; 

// xsegs(xv1,yv1,zv1); 

e1.data = [xv1, yv1, zv1]; 

 

e2 = f.user_data.e2; 

xv2 = [l1*cos(theta1); l1*cos(theta1) - 

l2*sin(theta2)*cos(%pi/2 - theta1)]; 

yv2 = [l1*sin(theta1); l1*sin(theta1) + 

l2*sin(theta2)*sin(%pi/2 - theta1)]; 

zv2 = [0; l2*cos(theta2)]; 

// xsegs(xv2,yv2,zv2); 

e2.data = [xv2, yv2, zv2]; 

drawnow(); 

 

endfunction 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 26/32 

 

Step 26: Using the animation function in Xcos 

To use the animation function as a block in Xcos, it is sufficient to open 

one of the previous Xcos scheme and add a “SCIFUNC_BLOCK_M”. 

To connect the block with the Scilab function inv_pend_anim.sci it is 

sufficient to specify the number and type of input and output ports and the 

function name as reported in the following figures. 

 
Figure 17: Specifying input and output ports 

 
 

 

 

 
Figure 19: The Xcos scheme with the animation block 

(inv_pend_se_anim.zcos) 
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 27/32 

 
Figure 18: Specifying the Scilab command 

Step 27: Running the animation 

Before running the Xcos scheme, remember to load the function adding 

the following command exec("inv_pend_anim.sci",-1) in the set context 

menu. 

 

 
Figure 20: set context window 

 

The animation results are reported on the right. 

 

 
 
 
 

     
 

     
 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 28/32 

     
Figure 21: Simulation results: Some images 

 The entire animation is available for download 
 
 
 

Step 28: Exercise 1 

Try to implement an unwrapping function that maps, using only Xcos 

blocks, an input signal into the interval  and having  as mean 

value (it maps 0 into ). 

 

On the right we propose an idea of the scheme and its result. 

 

 

 

 

 

 

 

 

 

 

 
Figure 22: Xcos System (ex1.zcos) 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 29/32 

 

 

 

 

 

 

 

Hints: Use the quantization block. 

 
Figure 23: Plots and Results 

 

Step 29: Exercise 2 

Starting from noised angle measures try to develop a recovery procedure 

for the recovery of the derivative, i.e. if we kwon the angle at each time 

step we want to know the velocity. 

 

The idea is to use a high-pass filter with a unity gain. Try to complete the 

following scheme adding the appropriate block in the empty block. 

Solution is given in ex2.zcos. 

 

 
 
 

 



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 30/32 

 
Figure 24: Example of recovery strategy for the derivative of a signal 

 

 

 

 

 

 
Figure 25: Noise input and original signal 

 
 

 
Figure 26: Example of recovery 

 
 

Step 30: Concluding remarks and References   



 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 31/32 

In this tutorial we have presented a modeling approach for the control of 

an inverted pendulum in Scilab/Xcos. The regulator is developing using 

the Control System Toolbox available in Scilab known as CACSD while 

the simulation is done using Xcos. 

 

All the symbolic manipulations of the expressions and equations have 

been obtained using Maxima; the software is free and available at [3]. 

 

It is trivial that the system is only a study version which can be improved 

in several ways, for example improving the PID parameters or 

development a new strategy algorithm. 

 

 

1. Scilab Web Page: Available: www.scilab.org 

2. Openeering: www.openeering.com 

3. Maxima: http://maxima.sourceforge.net/ 

 

 

 
Figure 27: Maxima graphical user interface 

 

 

 

 

Step 31: Software content  
 

-------------- 

Main directory 

http://www.scilab.org/
http://www.openeering.com/
http://maxima.sourceforge.net/


 

A Scilab Tutorial On An Inverted Pendulum www.openeering.com page 32/32 

To report bugs or suggest improvements please contact the Openeering 

team. 

www.openeering.com 

 

 

 

 

Thank you for your attention, 

Manolo Venturin, Silvia Poles 

 

-------------- 

Animation.png  : Animation of the inv. pend. 

ex1.zcos   : Solution of the ex. 1 

ex2.zcos   : Solution of the ex. 2 

inv_pend.zcos  : Inv. pend. in Xcos 

inv_pend_anim.sci  : Inv. pend. animation 

inv_pend_anim.zcos  : Inv. pend. with animation in Xcos 

inv_pend_ctrl.zcos  : Inv. pend. with regulator 

inv_pend_ctrl_anim.zcos : Inv. pend. with anim. and regulator 

inv_pend_ganim.sce  : Post-processing animation 

inv_pend_mode.sci  : Inv. pend. mode function 

inv_pend_nl_scilab.sce : Inv. pend. in Scilab 

inv_pend_se.zcos  : Inv. pend. self-erecting 

inv_pend_se_anim.zcos : Inv. pend. self-erecting with anim. 

inv_pend_se_conf.sce : Inv. pend. self-erecting conf. 

inv_pend_se_data  : Inv. pend. self-erecting solut. 

invpend_check.sce  : Inv. pend. development 

license.txt  : The license file 

system_maxima.txt  : Maxima scripts 
 

 

http://www.openeering.com/

