
powered by

EnginSoft SpA - Via della Stazione, 27 - 38123 Mattarello di Trento | P.I. e C.F. IT00599320223

MULTIOBJECTIVE OPTIMIZATION?

DO IT WITH SCILAB

Authors: Silvia Poles

Keywords. Multiobjective optimization; Scilab

Abstract: One of the Openeering team goal is to support optimization in
companies daily activities. We never miss the opportunity to stress
the importance of optimization and to explain how optimization can
play a significant role in the design cycle.

In this tutorial we show how Scilab can be considered as a powerful
multiobjective and multidisciplinary optimization software.

Contacts s.poles@openeering.com

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

Multiobjective Optimization in Scilab

www.openeering.com page 2/12

1. Optimization? Do it with Scilab!

One of the Openeering team goal is to support optimization in companies daily activities. We never
miss the opportunity to stress the importance of optimization and to explain how optimization can
play a significant role in the design cycle. When we talk about optimization, we always refer to real-
life applications as we know that our readers are interested in methods and software for solving
industrial cases. Particularly, we refer to problems where multiple and nonlinear objectives are
involved.

In this article we will introduce you Scilab1, a numerical computing environment that should be
considered as a powerful multiobjective and multidisciplinary optimization software. Scilab is a

high-level matrix language with a syntax that is very similar to MATLAB®2. Exactly as MATLAB®
does, Scilab allows to define mathematical models and to connect to existing libraries. As for
MATLAB®, optimization is an important topic for Scilab. Scilab has the capabilities to solve both
linear and nonlinear optimization problems, single and multiobjective, by means of a large
collection of available algorithms.

Here we are presenting an overall idea of the optimization algorithms available in Scilab; the
reader can find some code that can be typed and used in the Scilab console to verify the potential
of this numerical computing environment for solving very common industrial optimization

problems3.

2. Linear and nonlinear optimization

As our readers already know, “optimize” means selecting the best available option from a wide
range of possible choices. Doing this as a daily activity can be a complex task as, potentially, a
huge number of choices should be tested when using a brute force approach.

The mathematical formulation of a general optimization problem can be stated as follows:

(x1, …, xn) are the variables, the free parameters which can vary in the domain S. Any time that

k>1, we speak about multiobjective optimization.

This is a very general definition because it remains valid for continuous and discrete variables, for
mixed integer problems, for linear and nonlinear functions, for linear and nonlinear constraints. It
may exist several different tailored approaches for solving an optimization problem according to
the number and type of variables, functions and constraints involved.

1 Download Scilab for free at http://www.scilab.org/

2 MATLAB is a registered trademark of The MathWorks, Inc

3 Contact the author for the original version of the Scilab scripts

Multiobjective Optimization in Scilab

www.openeering.com page 3/12

3. Graphical methods

Scilab is very helpful for solving daily optimization problems even simply by means of a graphical
method.

For example, suppose that you would like to find out the minimum point of the Rosenbrock
function. The contour plot can be a visual aid to identify the optimal area. Start up Scilab, copy the
following Scilab script and you obtain the plot in Figure 1.

function f=rosenbrockC(x1, x2)

 x = [x1 x2];

 f = 100.0 *(x(2)-x(1)^2)^2 + (1-x(1))^2;

endfunction

xdata = linspace(-2,2,100);

ydata = linspace(-2,2,100);

contour(xdata , ydata , rosenbrockC , [1 10 100

1000])

Figure 1: Contour plot (left) and 3d plot (right) of the Rosenbrock function. With this chart we can
identify that the minimum is in the region of the black contour with label 1. These means that a good
starting point for further investigations could be x=(0.5, ,0.5).

The contour plot can be the first step for finding an optimal solution. By the way, solving an
optimization problem by means of graphical methods is only feasible when we have a limited
number of input variables (2 or 3). In all other cases we need to proceed further and use numerical
algorithms to find solutions.

Multiobjective Optimization in Scilab

www.openeering.com page 4/12

4. Optimization algorithms

A large collection of different numerical methods is available for further investigations. There are
tens of optimization algorithms in Scilab and each method can be used to solve a specific problem
according to the number and smoothness of functions f, the number and type of variables x, the
number and type of constraints g. Some methods can be more suitable for constrained
optimization, others may be better for convex problems, others can be tailored for solving discrete
problems. Specific methods can be useful for solving quadratic programming, nonlinear problems,
nonlinear least squares, nonlinear equations, multi-objective optimization, and binary integer
programming. Table 1 gives an overview of the optimization algorithms available in Scilab. Many
other optimization methods are made available from the community every day as external modules
using the ATOMS Portal,

http://atoms.scilab.org/.

For showing the potentiality of Scilab as an optimization tool, we can start from the most used
optimization function: optim. This command provides a set of algorithms for nonlinear
unconstrained and bound-constrained optimization problems.

Let’s see what happens if we use the optim function for the previous problem:

function [f, g, ind]=rosenbrock(x, ind)

 f = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;

 g(1) = -400.*(x(2)-x(1)^2)*x(1)-2.*(1.-x(1))

 g(2) = 200.*(x(2)-x(1)^2)

endfunction

x0 = [-1.2 1];

[f, x] = optim(rosenbrock, x0);

// Display results

mprintf("x = %s\n", strcat(string(x)," "));

mprintf("f = %e\n", f);

If we use x0=[-1.2 1] as initial point, the function converges easily to the optimal point x*=[1,1] with
f=0.0.

The previous example calculates both the value of the Rosenbrock function and its gradient, as the
gradient is required by the optimization method. In many real case applications, the gradient can
be too complicated to be computed or simply not available since the function is not known and
available only as a black-box from an external function calculation. For this reason, Scilab has the
possibility to compute the gradient using finite differences using the function derivative or the
function numdiff.

For example the following code define a function f and compute the gradient on a specific point x.

function f=myfun(x)

 f=x(1)*x(1)+x(1)*x(2)

endfunction

x=[5 8]

g=numdiff(myfun,x)

These two functions (derivative and numdiff) can be used together with optim to minimize problem
where gradient is too complicated to be programmed.

The optim function uses a quasi-Newton method based on BFGS formula that is an accurate
algorithm for local optimization. On the same example, we can even apply a different optimization

http://atoms.scilab.org/

Multiobjective Optimization in Scilab

www.openeering.com page 5/12

approach such as the derivative-free Nelder-Mead Simplex [1] that is implemented in the function
fminsearch. To do that we just have to substitute the line:

[f, x] = optim(rosenbrock, x0);

with

[x,f] = fminsearch(rosenbrock, x0);

This Nelder-Mead Simplex algorithm, starting from the same initial point, converges very close to
the optimal point and precisely to x*=[1.000022 1.0000422] with f=8.177661e-010. This shows that
the second approach is less accurate than the previous one: this is the price to pay in order to
have a more robust approach that is less influenced by noisy functions and local optima.

Figure 2 shows the convergence of the Nelder-Mead Simplex method on the Rosenbrock function.

Figure 2: Convergence of the Nelder-Mead Simplex algorithms (fminsearch function) on the
Rosenbrock example.

Multiobjective Optimization in Scilab

www.openeering.com page 6/12

Table 1: This table (originally published in [2]) gives an overview of the optimization algorithms
available in Scilab and the type of optimization problems which can be solved. For the constraints
columns, the letter “l” means “linear”. For the problem size s,m,l indicate small, medium and large
respectively that means less than ten, tens or hundreds of variables.

It is important to say that, in the previous example, the function is given by means of a Scilab script
but this was only done for simplicity. It is always possible to evaluate the function f as an external
function such as a C, Fortran or Java program or external commercial solver.

5. Parameter identification using measured data

In this short paragraph we show a specific optimization problem that is very common in
engineering. We demonstrate how fast and easy can be making parameters identification for
nonlinear systems, based on input/output data.

Suppose for example that we have a certain number of measurements in the matrix X and the
value of the output in the vector Y. Suppose that we know the function describing the model (FF)
apart from a set of parameters p and we would like to find out the value of those parameters. It is
sufficient to write few lines of Scilab code to solve the problem:

//model with parameters p

function y = FF(x, p)

 y = p(1)*(x-p(2))+p(3)*x.*x;

endfunction

Z = [Y;X];

//The criterion for evaluating the error

function e = G(p,z)

 y = z(1),x=z(2);

 e = y-FF(x,p);

endfunction

//Solve the problem giving an initial guess for p

Multiobjective Optimization in Scilab

www.openeering.com page 7/12

p0=[1;2;3]

[p,err]=datafit(G,Z,p0);

This method is very fast and efficient, it can find parameters for a high number of input/output data.
Moreover it can take into consideration parameters bounds and weights for points.

6. Evolutionary Algorithms: Genetic and Multiobjective

Genetic algorithms [3] are search methods based on the mechanics of natural evolution and
selection. These methods are widely used for solving highly non-linear real problem because of
their ability of being robust against noisy and local optima. Genetic algorithms are largely used in
real-world problems as well as in a number of engineering applications that were hard to solve with
“classical” methods.

Using the genetic algorithms in Scilab is very simple: in a few lines it is possible to set the required
parameters such as the number of generations, the population size, the probability of cross-over
and mutation. Figure 3 shows a single objective genetic algorithm optim_ga on the Rosenbrock
function. Twenty initial random points (in yellow) evolve through 50 generations towards the
optimal point. The final generation is plotted in red.

Figure 3: Optimization of the Rosenbrock function by means of a Genetic Algorithm. Initial random
population is in yellow, final population is in red and converges to the real optimal solution.

7. Multiobjective

Scilab is not only for single objective problems. It can easily threat multiobjective optimization
problems. Just to list one of the available methods, Scilab users can take advantage of the NSGA-
II. NSGA-II is the second version of the famous “Non-dominated Sorting Genetic Algorithm” based
on the work of Prof. Kalyanmoy Deb [4]. NSGA-II is a fast and elitist multiobjective evolutionary
algorithm.

Multiobjective Optimization in Scilab

www.openeering.com page 8/12

Figure 4 shows a multiobjective optimization run with NSGA-II using the test problem ZDT1. The
test problem states:

function f=zdt1(x)

f1_x1 = x(:,1);

g_x2 = 1 + 9 * ((x(:,2)-x(:,1)).^2);

h = 1 - sqrt(f1_x1 ./ g_x2);

f(:,1) = f1_x1;

f(:,2) = g_x2 .* h;

endfunction

With the ZDT1 we want to minimize both f1 and f2: this means that we are in front of a
multiobjective problem. With these problems, the notion of optimal solutions changes. A
multiobjective optimization does not produce a unique solution but a set of solutions. These
solutions are named non-dominated or Pareto solutions, the set of solutions can be called Pareto
frontier.

Figure 4 shows the solutions given by the Scilab’s NSGA-II optimization algorithm for solving the
ZDT1 problem. Red points on the top are the initial random populations, black points on the bottom
the final Pareto population. The solid line represents the actual Pareto frontier that, in this specific
example, is a continuous convex solution and is known. In this example, the concept of Pareto
dominance is clear. Red points on the top are dominated by black points on the bottom because
red points are worst than black points with respect to both objectives f1 and f2. On the contrary, all
black points on the bottom figure are not dominating each others, we may say in this case that all
the black points represent the set of efficient solutions.

Figure 4: ZDT1 problem solved with the Scilab’s NSGA-II optimization algorithm. Red points on the
top represents the initial populations, black points on the bottom the final Pareto population. The
solid line represents the Pareto frontier that, in this specific example, is a continuous convex
solution.

Multiobjective Optimization in Scilab

www.openeering.com page 9/12

To understand how Scilab recognizes the importance of multiobjective optimization, we can even
notice that it has an internal function named pareto_filter that is able to filter non-dominated
solutions on large set of data.

X_in=rand(1000,2);

F_in=zdt1(X_in);

[F_out,X_out,Ind_out] = pareto_filter(F_in,X_in)

drawlater;

plot(F_in(:,1),F_in(:,2),'.r')

plot(F_out(:,1),F_out(:,2),'.b')

drawnow;

The previous code generates 1,000 random input values, evaluates the zdt1 function and
computes the non-dominated solutions. The last four lines of the code generate the following chart
(Fig. 5) with all the points in red and the Pareto points in blue.

Figure 5: zdt1 function evaluate on 1,000 random points. Blue points are non-dominated Pareto
solutions. The code for selecting the Pareto solution is reported in the text. The main function to be
used is “pareto_filter”.

8. Solving the cutting stock problem: reducing the waste

The cutting stock problem is a very common optimization problem in industries and it is
economically significant. It consists on finding the optimal way of cutting a semi-processed product
into different sizes in order to satisfy a set of customers’ demands by using the material in the most
efficient way. This type of problem arises very often in industries and can involve a variety of
different goals such as minimizing the costs, minimizing the number of cutting, minimizing the
waste of material and consequently costs to dumb it, and so on. Whatever the target is, it is always
true that small improvements in cutting layout can result in remarkable savings of material and
considerable reduction in production costs.

In this section we will show how to solve a one-dimensional (1D) cutting stock problem with Scilab.

Multiobjective Optimization in Scilab

www.openeering.com page 10/12

Solving a 1D cutting stock problem is less complex than solving a 2D cutting stock problem (e.g.
cutting rectangles from a sheet), nevertheless it represents an interesting and common problem.
The 1D problem can arise, for example, in the construction industries where steel bars are needed
in specified quantities and lengths and are cut from existing long bars with standard lengths. It is
well-known that cutting losses are maybe the most significant cause of waste.

Suppose now that you are working for a company producing pipes that have usually a fixed length
waiting to be cut. These tubes are to be cut into different lengths to meet customers’ requests. How
can we cut the tubes in order to minimize the total waste?

The mathematical formulation for the 1D cutting stock problems can be:

Where, i is the index of the patterns, j the index of the lengths, xi are the number of cutting patterns
i (decision variables) and ci are the costs of the pattern i. A=(aij) the matrix of all possible patterns
and qj the customers’ requests. We may say that the value aij indicates the number of pieces of
length j within one pipe cut in the pattern i. The goal of this model is to minimize the objective
function which consists of the total costs of the cutting phase. If ci is equal to 1 for all the patterns,
the goal corresponds to the total number of pipes required to accomplish the requirements.

Let’s make a practical example and solve it with Scilab. Suppose that we have 3 possible sizes,
55mm, 26mm, and 24mm in which we can cut the original pipe of 100 mm. The possible patterns
are:

1. One cut of type one and one of type two and zero of type three [1 1 0]

2. One cut of type one and one of type three [1 0 1]

3. Two cut of type two and two of type three [0 2 2]

These patterns define the matrix A. Then we have the costs that are 4, 3 and 1 for the pattern 1, 2
and 3 respectively. The total request from the customers are: 150 pieces of length 55mm, 200 with
length equal to 26mm and 300 pieces with length 24mm.

For solving this problem in Scilab we can use this script.

//pattern

aij=[1 1 0;

 1 0 1;

 0 2 2];

//costs

ci=[4; 3; 1];

//request

qj=[150; 200; 300];

xopt = karmarkar(aij',qj,ci)

Running this script with Scilab you obtain xopt=[25, 125, 87.5], this means that to satisfy the
requests reducing the total number of pipes we have to cut 25 times the pattern (1), 125 time with
pattern (2) and 87.5 times the pattern (3).

Multiobjective Optimization in Scilab

www.openeering.com page 11/12

We show here a simple case with only three different requests and three different patterns. The
problem can be much more complicated, with many more options, many different dimensions,
costs and requests. It may include the maximum number of cuts on a single piece, it may require a
bit of effort in generating the list of feasible pattern (i.e. the matrix A). All these difficulties can be
coded with Scilab and the logic behind the approach remains the same.

The previous script uses an interior point method [5] to solve this linear problem. The result gives
and output that is not an integer solution, hence we need to approximate because we cannot cut
87.5 pipes with the third pattern. This approximated solution can be improved with another
different optimization algorithm, for example evaluating the nearest integer solutions or using a
more robust genetic algorithm. But even if we stop with the first step and we round the solution we
have a good reduction of waste.

It is important to note that if we solve a problem with a different request, asking to obtain “at least”
qj, the constraints should be written as

and the Scilab script that takes into account inequality constraints results as follows:

//pattern

aij=[1 1 0;

 1 0 1;

 0 2 2];

//costs

ci=[4; 3; 1];

//request

qj=[150; 200; 300];

xopt = karmarkar([],[],ci,[],[],[],[],[],-aij',-qj,[0,0,0]',[])

The solution in this case becomes xopt=[0,150,100] with a total cost of 550. It is amusing to note
that, with the problem formulated in this manner, we are able to reduce the total cost that was
previously equal to 562.5, even increasing the total number of cuts4.

9. Conclusions

As the solution of the cutting stock problem demonstrates, Scilab is not an educational tool but a
product for solving real industrial problem. The cutting stock problem is a common issue in
industries, and a good solution can result in remarkable savings. By the way, in this article we
presented only a small subset of possibilities that a Scilab user can have for solving real-world
problems. For further information on Scilab optimization algorithms and methodologies see [6-9].

For sake of simplicity, this paper shows only very trivial functions that have been used for the
purpose of making a short and general tutorial. Obviously these simple functions can be
substituted by more complex and time consuming ones such as FEM solvers or external simulation
codes.

MATLAB users have probably recognized the similarities between the commercial software and
Scilab. We hope, all other readers have not been scared from the fact that problems and methods
should be written down as scripts. Once the logic is clear, writing down scripts can result in an
agile and exciting activity.

4 Thanks to Andreas Vlahinos for reporting this solution.

Multiobjective Optimization in Scilab

www.openeering.com page 12/12

10. References

[1] Nelder, John A.; R. Mead (1965). "A simplex method for function minimization". Computer
Journal 7: 308–313

[2] Scilab Optimization Datasheet, http://wiki.scilab.org/Scilab%20Optimization%20Datasheet

[3] David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-
Wesley, 1989

[4] Deb, K., Pratap. A, Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 181-197

[5] Narendra Karmarkar (1984). "A New Polynomial Time Algorithm for Linear Programming",
Combinatorica, Vol 4, nr. 4, p. 373–395

[6] Baudin, Couvert, Steer. "Optimization In Scilab", Digiteo, INRIA

[7] Baudin M. "Nelder mead user's manual", Digiteo

[8] Baudin M., Steer S. "Optimization with Scilab, present and future", in Proceedings of 2009
International Workshop On Open-Source Software For Scientific Computation (Ossc-2009)

[9] Baudin M. "Introduction to optimization in Scilab", Consortium Scilab - Digiteo

