
 

www.openeering.com 

powered by

 

MULTIOBJECTIVE OPTIMIZATION AND GENETIC 

ALGORITHMS 

In this Scilab tutorial we discuss about the importance of multiobjective 
optimization and we give an overview of all possible Pareto frontiers. Moreover 
we show how to use the NSGA-II algorithm available in Scilab. 

Level 
     

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. 

 

 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 2/16 

Step 1: Purpose of this tutorial 

It is very uncommon to have problems composed by only a single 

objective when dealing with real-world industrial applications. Generally 

multiple, often conflicting, objectives arise naturally in most practical 

optimization problems. 

Optimizing a problem means finding a set of decision variables which 

satisfies constraints and optimizes simultaneously a vector function. The 

elements of the vector represent the objective functions of all decision 

makers. This vector optimization leads to a non-unique solution of the 

problem.  

For example, when selecting a vehicle that maximizes the comfort and 

minimizes the cost, not a single car, but a segment of cars may represent 

the final optimal selections (see figure). 

 

After a general introduction on multiobjective optimization, the final aim of 

this tutorial is to introduce the reader to multiobjective optimization in 

Scilab and particularly to the use of the NSGA II algorithm. 

 

 

 
(Example of car classification) 

Step 2: Roadmap 

In the first part of the tutorial we review some concepts on multiobjective 

optimization, then we show how to use NSGA-II algorithm in Scilab.  

Steps 14 to 16 present some examples and exercises. 

Step 17 shows how to call external (black-box) functions in Scilab. 

 

 
 

 

Descriptions Steps 

Multiobjective optimization 3-5 

NSGA 2 6-13 

Examples and exercises 14-16 

Calling external functions 17 

Conclusion and remarks 18-19 

 
 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 3/16 

Step 3: Multiobjective scenario 

Here we consider, without loss of generality, the minimization of two 

objectives all equally important, where no additional information about 

the problem is available. 

A solution of the problem can be described by a “decision vector”  of 

the form  lying in the design space . The evaluation of the 

two objective functions on  produces a solution  in the 

objective space , i.e.  is a vector map of the form: . 

Comparing two solutions  and  requires to define a dominance 

criteria. In modern multiobjective optimization the Pareto criteria is the 

most used. This criteria states: 

 An objective vector  is said to dominate another objective 

vector  (i.e., ) if no component of  is greater than the 

corresponding components of  and at least one component is 

greater; 

 accordingly, the solution  dominates , if  dominates 

; 

 all non-dominated solutions are the optimal solutions of the 

problem, solutions not dominated by any others. The set of these 

solutions is named Pareto set while its image in objective space 

is named Pareto front. 

A generic multiobjective optimization solver searches for non-dominated 

solutions that correspond to trade-offs between all the objectives. 

The utopia (or ideal) point corresponds to the minimal of all the objectives 

and typically is not a real and feasible point. 

 
 

 

 
 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 4/16 

Step 4: Type of Pareto fronts 

The computation of the Pareto front can be a very difficult task. Many 

obstacles can make the problem complex: non-continuous design space, 

high-dimensionality and clustered solutions.  Moreover, in a similar 

manner as local optimal points can trap algorithms in single objective 

problems, local Pareto frontiers can cause bad convergence of the 

multiobjective optimization approaches. 

Two very typical Pareto fronts can arise when solving multiobjective 

optimization problems: 

 Convex front  

This is the most interest case for decision makers. When the Pareto 

front has this shape, the decision makers can negotiate, fighting for 

their own objective and they can more easily agree for a trade-off 

point. In this situation, the trade-off is much better than the linear 

combination of the original objectives. This means, practically, that if a 

decision maker gives up a percentage of its target, say 20%, another 

decision maker may have an improvement of more than 20% on his 

personal target. 

 Non-convex front:  

This is the opposite of the previous situation, negotiation between 

decision markers is harder. Here, a decision maker should give up 

more than 20% of his goal to give at least 20% advantage to another 

decision maker. The final solution depends more on the influence of 

the decision maker rather than on a “democratic” negotiation. 

Discontinuous fronts are common and more complex to analyze, any 

piece of a discontinuous front may be reduced to the two previous cases. 

 
 

 
(Convex front) 

 
(Non-convex front) 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 5/16 

Step 5: Evolution algorithms 

Many algorithms are based on a stochastic search approach such as 

evolution algorithm, simulating annealing, genetic algorithm.  

 

The idea of these kind of algorithms is the following: 

1. Define a memory that contains current solutions; 

2. Define a selection module that determines which of the 

previously solutions should be kept in memory.  Two types of 

selection are available: 

- Mating selection which consists of a fitness selection 

phase where promising solutions are picked for variation; 

- Environmental selection that determines which of stored 

solutions are kept into the memory. 

3. Define a variation module that takes a set of solutions and 

systematically, or randomly, modifies these solutions to generate 

potentially better solutions using specific operators such as: 

- Crossover which produces new individuals combining 

the information of two or more parents; 

- Mutation which alters individuals with low probability of 

survival. 

When we consider an evolution algorithm, by analogy to natural evolution, 

we call solutions as candidates and the set of candidates as population. 

The fitness function is a particular objective function that characterizes 

the problem measuring how close a given solution is to achieve the 

target, considering also all problem constraints. 

-  

 
 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 6/16 

Step 6: NGSA-II 

NSGA-II is the second version of the famous “Non-dominated Sorting 

Genetic Algorithm” based on the work of Prof. Kalyanmoy Deb for 

solving non-convex and non-smooth single and multiobjective 

optimization problems. 

 

Its main features are: 

 A sorting non-dominated procedure where all the individual are 

sorted according to the level of non-domination; 

 It implements elitism which stores all non-dominated solutions, 

and hence enhancing convergence properties; 

 It adapts a suitable automatic mechanics based on the crowding 

distance in order to guarantee diversity and spread of solutions; 

 Constraints are implemented using a modified definition of 

dominance without the use of penalty functions. 

 

The Scilab function that implements the NSGA-II algorithm is: 

 

optim_nsga2 

 

which is directly available with Scilab installation. 

 

 Scilab syntax: 

[pop_opt,fobj_pop_opt,pop_init,fobj_pop_init] = 
optim_nsga2(ga_f,pop_size,nb_generation,p_mut,p_cross,Log,param) 

 

Input arguments: 

 ga_f: the function to be optimized; 

 pop_size: the size of the population of individuals; 

 nb_generation: the number of generations to be computed; 

 p_mut: the mutation probability; 

 p_cross: the crossover probability; 

 Log: if %T, we will display to information message during the run of 
the genetic algorithm; 

 param: a list of parameters: 

- 'codage_func': the function which will perform the coding 
and decoding of individuals; 

- 'init_func': the function which will perform the initialization of 
the population; 

- 'crossover_func': the function which will perform the 
crossover between two individuals; 

- 'mutation_func': the function which will perform the 
mutation of one individual; 

- 'selection_func': the function which will perform the 
selection of individuals at the end of a generation; 

- 'nb_couples': the number of couples which will be selected 
so as to perform the crossover and mutation; 

- 'pressure': the value the efficiency of the worst individual. 
 
Output Parameters: 

 pop_opt: the population of optimal individuals; 

 fobj_pop_opt: the set of objective function values associated to 
pop_opt; 

 pop_init: the initial population of individuals; 

 fobj_pop_init: the set of objective function values associated to 
pop_init (optional). 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 7/16 

Step 7: Problem ZDT1 

The ZDT1 problem consists of solving the following multiobjective 

optimization problem: 

 

where the object functions are 

 

 

and 

 

 

 

 

 

On the left we report the optimal Pareto front defined by 

 

 

 

This function has a continuous optimal Pareto front. Moving along the 

frontier, from left to right, we improve the value of  making the objective 

function  worse. 

 

 
(Optimal Pareto front for n=2) 

 

 
(Pareto Set Points for n=2) 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 8/16 

Step 8: Creating the ZDT1 function 

In this first step, we create the "zdt1" function and its boundaries. 

 

Please note that the function ZDT1 returns a horizontal vector of 

multiobjective functions evaluations. 

 

In the boundary functions we even define the problem dimension. 

 

 
 
 

// ZDT1 multiobjective function 

function f=zdt1(x) 

f1 = x(1); 

g  = 1 + 9 * sum(x(2:$)) / (length(x)-1); 

h  = 1 - sqrt(f1 ./ g); 

f = [f1, g.*h]; 

endfunction 

 

// Min boundary function 

function Res=min_bd_zdt1(n) 

Res = zeros(n,1); 

endfunction 

 

// Max boundary function 

function Res=max_bd_zdt1(n) 

Res = ones(n,1); 

endfunction 

 
 
 

Step 9: Set NSGA-II parameters 

In this step, we set algorithm parameters and problem dimension. 

 

 

 
 
 
 

// Problem dimension 

dim = 2; 

 

// Example of use of the genetic algorithm 

funcname    = 'zdt1'; 

PopSize     = 500; 

Proba_cross = 0.7; 

Proba_mut   = 0.1; 

NbGen       = 10; 

NbCouples   = 110; 

Log         = %T; 

pressure    = 0.1; 

 
 
 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 9/16 

Step 10: Set NSGA-II main functions 

Here, we set the NSGA-II main functions. In our case, since the problem 

is continuous we use the default NSGA functions. 

In case of more complex mathematical optimization problem, the user can 

easily change the NSGA-II operators. For example, the user may define 

his own "mutation_func" function describing a mutation operation that 

perfectly fits with the problem at hand. The same can be done for 

"crossover_func" function or for the internal coding "codage_func". 

 
 

// Setting parameters of optim_nsga2 function  

ga_params = init_param(); 

// Parameters to adapt to the shape of the optimization 

problem 

ga_params = 

add_param(ga_params,'minbound',min_bd_zdt1(dim)); 

ga_params = 

add_param(ga_params,'maxbound',max_bd_zdt1(dim)); 

ga_params = add_param(ga_params,'dimension',dim); 

ga_params = add_param(ga_params,'beta',0); 

ga_params = add_param(ga_params,'delta',0.1); 

// Parameters to fine tune the Genetic algorithm. 

// All these parameters are optional for continuous 

optimization. 

// If you need to adapt the GA to a special problem.  

ga_params = 

add_param(ga_params,'init_func',init_ga_default); 

ga_params = 

add_param(ga_params,'crossover_func',crossover_ga_default

); 

ga_params = 

add_param(ga_params,'mutation_func',mutation_ga_default); 

ga_params = 

add_param(ga_params,'codage_func',coding_ga_identity); 

ga_params = add_param(ga_params,'nb_couples',NbCouples); 

ga_params = add_param(ga_params,'pressure',pressure); 

 

// Define s function shortcut 

deff('y=fobjs(x)','y = zdt1(x);'); 
 

Step 11: Performing optimization 

The multiobjective optimization is performed using the command 

"optim_nsga2". Other methods are available, see for example:  

 optim_moga: multiobjective genetic algorithm; 

 optim_ga: A flexible genetic algorithm; 

 optim_nsga: A multiobjective Niched Sharing Genetic Algorithm. 

 

 
// Performing optimization 

printf("Performing optimization:"); 

[pop_opt, fobj_pop_opt, pop_init, fobj_pop_init] = 

optim_nsga2(fobjs, PopSize, NbGen, Proba_mut, 

Proba_cross, Log, ga_params); 
 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 10/16 

Step 12: Plot the Pareto front 

The Pareto front is obtained using the "pareto_filter" Scilab 

command, which automatically extracts non dominated solutions from a 

set of multiobjective and multidimensional solutions. 

 

In order to plot the “population” it is necessary to convert the list 

"pop_pareto" to a vector using the command “list2vec“. 

 

 
 
 

// Compute Pareto front and filter 

[f_pareto,pop_pareto] = 

pareto_filter(fobj_pop_opt,pop_opt); 

 

// Optimal front function definition 

f1_opt = linspace(0,1); 

f2_opt = 1 - sqrt(f1_opt); 

 

// Plot solution: Pareto front 

scf(1); 

// Plotting final population 

plot(fobj_pop_opt(:,1),fobj_pop_opt(:,2),'g.'); 

// Plotting Pareto population 

plot(f_pareto(:,1),f_pareto(:,2),'k.'); 

plot(f1_opt, f2_opt, 'k-'); 

title("Pareto front","fontsize",3); 

xlabel("$f_1$","fontsize",4); 

ylabel("$f_2$","fontsize",4); 

legend(['Final pop.','Pareto pop.','Pareto front.']); 

 

// Transform list to vector for plotting Pareto set 

npop = length(pop_opt); 

pop_opt = matrix(list2vec(pop_opt),dim,npop)'; 

nfpop = length(pop_pareto); 

pop_pareto = matrix(list2vec(pop_pareto),dim,nfpop)'; 

 

// Plot the Pareto set 

scf(2); 

// Plotting final population 

plot(pop_opt(:,1),pop_opt(:,2),'g.'); 

// Plotting Pareto population 

plot(pop_pareto(:,1),pop_pareto(:,2),'k.'); 

title("Pareto Set","fontsize",3); 

xlabel("$x_1$","fontsize",4); 

ylabel("$x_2$","fontsize",4); 

legend(['Final pop.','Pareto pop.']); 

 
 
 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 11/16 

Step 13: Some results 

Here, we report some results obtained running NSGA-II with the ZDT1 

and changing the number of generations (parameter “NbGen“).  

NbGen takes values from the set (5,10,15,20). 

 

 

 
 
 
 

     
 

(NbGen = 5)                                          (NbGen = 10) 
 
 
 

     
 

(NbGen = 15)                                      (NbGen = 20) 
 
 
 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 12/16 

Step 14: Exercise #1: ZDT2 problem 

Solve for the ZDT2 problem consists of solving the following 

multiobjective optimization problem: 

 

where the two object functions are 

 

 

and 

 

 

 

 

 

In the left we have reported the optimal Pareto front defined by 

 

 

This function presents a continuous non-convex optimal Pareto front.  

 

 

 
(Optimal Pareto front for n=2) 

 

 
(Pareto Set Points for n=2) 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 13/16 

Step 15: Exercise #2: ZDT3 problem 

Solve for the ZDT3 problem consists of solving the following 

multiobjective optimization problem: 

 

where the two object functions are 

 

 

and 

 

 

 

In the left we have reported the optimal Pareto front defined by 

 with  defined as 

 

 

This function has a discontinuous optimal Pareto front. 

 

 

 

 
(Optimal Pareto front)  

 

 
(Pareto Set Points for n=2) 



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 14/16 

Step 16: Exercise #3 

Modify the ZDT1 program in order to plot the population at each step. 

Hints: 

 Create a global variable named “currPop“ where to save the 

population at each time step; 

 Create an initial function for the optim_nsga2 named 

“init_ga_previous“ that loads the computed population at 

each step except the initial step where the original init function 

must be called. 

 Add plot at each time step 

 If you want to produce a video or animate png save each plot 

using the command “xs2png“ (for example an animated png 

image can be created using the program JapngEditor). 

// Create a global variable 

global currPop; 

 

// Create a function for initialize the global variable 

function Pop_init=init_ga_previous(popsize, param) 

    global currPop; 

    Pop_init = currPop; 

endfunction 

 

// Performing optimization 

for i=1:NbGen 

    // Call optim_nsga2 with a local number of generation equals 

to 1 

    if i>1 

        // Change init generation function 

    end 

    // Save population 

    currPop = pop_opt; 

    // filtering and Plotting data 

end 

  

 

    
 

     
 

     



 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 15/16 

Step 17: Calling external functions 

 

Scilab, with its Input/Output functions,  enables coupling to any external 

functions and tools (even CAD, CAE, CFD) that can be called from 

external commands. 

This can be done in a very easy way as shown in several examples in 

“Made with Scilab”: 

 

http://www.openeering.com/made_with_scilab 

 

Scilab can even deal with parallel computing. This represents an 

enormous advantage when combining optimization together with 

engineering simulations. This approach can speed-up time-consuming 

optimization problems that are very typical in industrial applications. 

 

Moreover, if simulation time is still too demanding, Scilab can take 

advantage of several meta-modeling techniques such as Kriging, DACE, 

neural networks, etc. 

 

If you are interested in integrating your simulation code into Scilab for 

solving specific optimization problem, please do not hesitate to contact 

the Openeering team. 

 

 

 

 The most useful commands to integrate Scilab with your external code are: 

 dos — shell (cmd) command execution (Windows only); 

 unix — shell (sh) command execution; 

 unix_g — shell (sh) command execution, output redirected to a 
variable; 

 unix_s — shell (sh) command execution, no output ; 

 unix_w — shell (sh) command execution, output redirected to scilab 
window; 

 unix_x — shell (sh) command execution, output redirected to a 
window; 

 host — Unix or DOS command execution. 

 
 
 

// Windows only example 

[s,w] = dos('dir'); 

// general syntax to run my simulation code with options 

in Windows systems 

//[s, w] = dos('mysimulation.exe /option') 

 

//Run list or dir according to operating systems 

if getos() == 'Windows' then 

  unix_w("dir "+'""'+WSCI+"\modules"+'""');  

else  

  unix_w("ls $SCI/modules"); 

end 
 

http://www.openeering.com/made_with_scilab
file:///D:/users/Silvia/OPENEERING/tutorial/Multiobjective/doc/unix_g.html
file:///D:/users/Silvia/OPENEERING/tutorial/Multiobjective/doc/unix_g.html
unix_g.html
unix_s.html
unix_w.html
unix_x.html
host.html


 

Multiobjective optimization with NSGA-II 
  www.openeering.com page 16/16 

Step 18: Concluding remarks and References 

In this Scilab tutorial we have shown how to use the NSGA-II within 

Scilab. 

On the right-hand column you may find a list of interesting references for 

further studies. 

 

 

 

1. Scilab Web Page: Available: www.scilab.org. 

2. Openeering: www.openeering.com. 

3. ZDT1, ZDT2 and ZDT3 documentation: 

http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/ 

4. JapngEditor : https://www.reto-hoehener.ch/japng/ 

 

Step 19: Software content 

To report bugs or suggest improvements please contact the Openeering 

team. 

www.openeering.com. 

 

 

 

 

Thank you for your attention, 

Manolo Venturin and Silvia Poles 

 

 

 

---------------- 

NSGA 2 IN SCILAB 

---------------- 

 

-------------- 

Main directory 

-------------- 

example_steps.sce  : Exercise 1 

example_ZDT1.sce  : Example for the ZDT1 function 

example_ZDT2.sce  : Example for the ZDT2 function 

example_ZDT3.sce  : Example for the ZDT3 function 

front_plots.sce  : Plots Pareto fronts and sets 

license.txt  : The license file 

 
 

 

http://www.scilab.org/
http://www.openeering.com/
http://www.tik.ee.ethz.ch/sop/download/supplementary/testproblems/
https://www.reto-hoehener.ch/japng/
http://www.openeering.com/

