

www.openeering.com

powered by

SOLVING NONLINEAR SYSTEMS IN SCILAB

Everyday engineers encounter steady-state nonlinear problems in their real-case
applications.
In this tutorial we show how nonlinear systems can be easily solved using Scilab.

Level

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Nonlinear systems in Scilab
 www.openeering.com page 2/12

Step 1: Purpose of this tutorial

It is very common in the engineering area to solve steady state nonlinear

problems.

Typically, two kinds of nonlinear systems arise:

 Systems with nonlinear equations in unknowns.

 Systems with nonlinear equations in unknown

If the reader is interested in determining the zeros of polynomials, please

refer to the help of the main Scilab commands for managing polynomials

(e.g. roots, poly, and horner).

{

 ()

 ()

 ()

(Systems with nonlinear equations in unknowns)

{

 ()

 ()

 ()

(Systems with nonlinear equations in unknowns)

Step 2: Roadmap

In the first part of this tutorial we show how to use the command fsolve

for equations and systems of equations. The command is used for solving

systems with exactly the same number of equations and unknowns.

The second part focuses on the use of the command lsqrsolve. In this

last part the reader can see how to solve systems with fewer unknowns

than equations.

Descriptions Steps

fsolve 3-7

lsqrsolve 8-10

Exercise 11

Final remarks and references 12-13

Nonlinear systems in Scilab
 www.openeering.com page 3/12

Step 3: The fsolve function

The “fsolve” function solves systems of nonlinear equations and

unknowns.

The algorithm characteristics are:

 The fsolve function is based on the idea of the Newton method;

 It is an iterative method, i.e. it starts from an initial approximation

value and then it performs an iteration, obtaining , and so on;

 Only one solution is found by the command and this solution

depends on the initial approximation (basin of attraction).

 Scilab syntax for fsolve:

[x [,v [,info]]]=fsolve(x0,fct [,fjac] [,tol])

Arguments:

 x0: real vector (initial value of function arguments);

 fct: external (i.e. function or list or string);

 fjac: external (i.e. function or list or string);

 tol: real scalar, precision tolerance: termination occurs when the
algorithm estimates that the relative error between x and the solution

is at most tol. (tol=1.d-10 is the default value);

 x: real vector (final value of function argument, estimated zero);

 v: real vector (value of function at x);

 info: termination indicator:

- 0: improper input parameters;
- 1: algorithm estimates that the relative error between x and

the solution is at most tol;

- 2: number of calls to fct reached;
- 3: tol is too small. No further improvement in the

approximate solution x is possible;

- 4: iteration is not making good progress.

For examples and more details see:

http://help.scilab.org/docs/5.3.0/en_US/fsolve.html

http://help.scilab.org/docs/5.3.0/en_US/fsolve.html

Nonlinear systems in Scilab
 www.openeering.com page 4/12

Step 4: fsolve example (scalar case)

In this example we want to solve the following function;

 ()

or, equivalently, to find the zero of

 () ()

The graphical representation is given in the following figure.

// Example 1

deff('res=fct_1(x)','res=cos(x)-x')

x0 = 0.

xsol =fsolve(x0,fct_1)

x = linspace(-2,2,51)

fcos = cos(x)

fx = x

scf(1)

clf(1)

plot(x,fcos,'r-');

p = get("hdl"); p.children.thickness = 3;

plot(x,fx,'b-');

p = get("hdl"); p.children.thickness = 3;

(Coding of the example)

The obtained solution is: xsol = 0.7390851

Nonlinear systems in Scilab
 www.openeering.com page 5/12

Step 5: fsolve example (2-dimensional case)

In this example we solve the following 2-dimensional problem

{

()

The graphical representation is given in the following figure. The figure

reveals the presence of two solutions. Depending on the initial point, the

function fsolve can reach the first or the second solution as reported by

the example.

-

// Example 2

deff('res=fct_2(x)',['res(1)=x(2)-

(x(1).^2+1)';'res(2)=x(1)-(2*x(2)-x(2).^2)/3'])

scf(2)

clf(2)

x1 = linspace(-3,3,101)

y1 = x1.^2+1

y2 = linspace(-3,5,51)

x2=(2*y2-y2.^2)/3

plot(x1,y1,'r-');

p = get("hdl"); p.children.thickness = 3;

plot(x2,y2,'b-');

p = get("hdl"); p.children.thickness = 3;

x0 = [1;0]

xsol1 =fsolve(x0,fct_2)

res1 = fct_2(xsol1)

x0 = [-3;8]

xsol2 =fsolve(x0,fct_2)

res2 = fct_2(xsol2)

(Coding of the example)

The obtained solutions are

 xsol1 = [0.3294085; 1.10851]

 xsol2 = [- 1.5396133; 3.3704093]

with

 res1 = 10^(-14) * [0.1332268; 0.0610623]

 res2 = 10^(-13) * [- 0.3375078; - 0.1310063]

Nonlinear systems in Scilab
 www.openeering.com page 6/12

Step 6: fsolve example with embedded solver

In this example we combine the use of the fsolve function to solve a

boundary value problem using the shooting method.

The idea is to embed the Ordinary Differential Equation (ODE) solver

(shooting method) inside the fsolve function creating an appropriate

function to be solved. This approach is quite general since the ODE

solver can be seen as a black box function

The problem under consideration is the following:

 ()

 () with () and () .

This boundary value problem can be reduced to the following initial

differential equation problem

{
 ̇ () ()

 ̇ ()

 ()

where one of the initial condition in unknown, i.e.

{
 ()

 ()

In order to use the fsolve function we need to introduce the function for

which we want to find the zero. In this case, we define the function as

 () ()

where () is the solution of the boundary value problem subject to

the initial condition that depends on .

(Example of black-box)

Nonlinear systems in Scilab
 www.openeering.com page 7/12

Step 7: Coding and solving

The Scilab code is reported on the right. In the following figures we report

the initial solution and the optimal solution.

(Initial solution with and optimal solution with)

Changing the initial point to it is possible to find a different
solution.

(Initial solution with and optimal solution with)

// Example 3

function wdot=wsystem(t, w)

 wdot(1) = w(2)

 wdot(2) = 3/2*w(1).^2

endfunction

s = -1

w0 = [4;s]

t0 = 0

t = linspace(0,1)

// winit = ode(w0,t0,t,wsystem);

// plot(t,winit)

deff('res=fct_3(s)',['w0 = [4;s];','w =

ode(w0,t0,t,wsystem);','res=w(1,$)-1'])

s = -1

ssol =fsolve(s,fct_3)

// compute solution

w0 = [4;ssol]

t0 = 0

t = linspace(0,1)

wsol = ode(w0,t0,t,wsystem);

plot(t,wsol)

p = get("hdl"); p.children.thickness = 3

(Example’s code)

Nonlinear systems in Scilab
 www.openeering.com page 8/12

Step 8: Nonlinear least square fitting

Nonlinear least square is a numerical technique used when we have

nonlinear equations in unknowns. This means that, in these cases,

we have more equations than unknowns. This case is very common and

interesting and it arises, for example, when we want to fit data with

nonlinear (and non polynomial) equations.

The mathematical problem corresponds to find a local minimizer of the

following equation

 ()

∑(())

where n is the number of points, and fi represents the residual between

the i
th
 given measure data point and the interpolation model (estimated

data). Reducing the total sum of residuals corresponds to find the optimal

parameters for our fitting model with our given data.

For example, this is particularly useful for experimental data

interpolations.

(Example of nonlinear fitting)

Nonlinear systems in Scilab
 www.openeering.com page 9/12

Step 9: lsqrsolve

In Scilab the solution of problems in which we have more equations than

unknowns is obtained using the lsqrsolve function.

The algorithm features are:

 The lsqrsolve function is based on the Levenberg-Marquardt

algorithm;

 If the Jacobian is not provided it is calculated by a forward-

difference approximation;

 It is an iterative method, i.e. it starts from an initial approximation

value and then it performs an iteration obtaining , and so on;

 Only one solution is found and this solution depends on the initial

approximation (basin of attraction).

 Scilab syntax for lsqrsolve:

[x [,v [,info]]]=lsqrsolve(x0,fct,m [,stop [,diag]])

[x [,v [,info]]]=lsqrsolve(x0,fct,m ,fjac [,stop [,diag]])

Arguments:

 x0: real vector of length n (initial value of function argument);

 fct: external (i.e. function or list or string);

 m: integer, the number of functions. m must be greater than or equal

to n;

 fjac: external (i.e. function or list or string);

 stop: optional vector

[ftol,xtol,gtol,maxfev,epsfcn,factor] the default value

is [1.d-8,1.d-8,1.d-5,1000,0,100]

 diag: is an array of length n. diag must contain positive entries that

serve as multiplicative scale factors for the variables;

 x: real vector (final estimate of the solution vector);

 v: real vector (value of fct(x));

 info: termination indicator

For examples and more details see:

http://help.scilab.org/docs/5.3.3/en_US/lsqrsolve.html

http://help.scilab.org/docs/5.3.3/en_US/lsqrsolve.html

Nonlinear systems in Scilab
 www.openeering.com page 10/12

Step 10: lsqrsolve example

In this example we want to estimate the parameter of the following

Gaussian function (fgauss)

()

over a set of 100 data points. The data points are generated starting from

a Gaussian distribution, adding a uniform noise. The obtained result is

reported in the following figure.

We will have one equation for any point, so the total number of equations

is equal to 100. In our code the error function is named fgausseq.

(Optimal solution and given data)

// Example 4

function y=fgauss(x, A, x0, sigma)

 y = A*exp(-(x-x0).^2/(2*sigma^2))

endfunction

xdata = linspace(0,1)';

A = 1.0;

x0 = 0.5;

sigma = 0.1;

ydata = fgauss(xdata, A, x0, sigma) +

(rand(xdata)-0.5)*0.1;

// plot(xdata,ydata)

function err=fgausseq(param, m)

 A = param(1);

 x0 = param(2);

 sigma = param(3);

 err = ydata -fgauss(xdata, A, x0, sigma);

endfunction

pinit = [0.25; 0.25; 0.25]

[psol,v, info] =

lsqrsolve(pinit,fgausseq,size(xdata,1))

disp(psol)

plot(xdata,ydata,'ko')

p = get("hdl"); p.children.thickness = 3

plot(xdata,fgauss(xdata, psol(1), psol(2),

psol(3)),'b-')

p = get("hdl"); p.children.thickness = 3

(Example’s code)

Nonlinear systems in Scilab
 www.openeering.com page 11/12

Step 11: Exercise #1

Modify the previous example considering the following distribution

(Student's t-distribution)

 ()
 (

)

√ (

)
(

)

Here, we are interested in estimating from measured data.

Compare t-student and Gaussian distributions.

Hints: The gamma function in Scilab is gamma.

(Initial distribution)

(Comparisons between two different distributions)

Nonlinear systems in Scilab
 www.openeering.com page 12/12

Step 12: Concluding remarks and References

In this tutorial we have shown how to solve nonlinear problems in Scilab.

We described the use of both the fsolve and lsqrsolve functions.

On the right-hand column you may find a list of interesting references for

further studies.

1. Scilab Web Page: www.scilab.org

2. Openeering: www.openeering.com

3. http://help.scilab.org/docs/5.3.0/en_US/fsolve.html

4. http://en.wikipedia.org/wiki/Shooting_method

5. http://help.scilab.org/docs/5.3.3/en_US/lsqrsolve.html

Step 13: Software content

To report bugs or suggest improvements please contact the Openeering

team at www.openeering.com.

Thank you for reading,

Manolo Venturin and Silvia Poles

Nonlinear systems in Scilab

Main directory

ex_nonlinear.sce : All the examples

ex1.sce : Solution of exercise 1

license.txt : The license file

http://www.scilab.org/
http://www.openeering.com/
http://help.scilab.org/docs/5.3.0/en_US/fsolve.html
http://en.wikipedia.org/wiki/Shooting_method
http://help.scilab.org/docs/5.3.3/en_US/lsqrsolve.html
http://www.openeering.com/

