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NUMERICAL ANALYSIS USING SCILAB: 
SOLVING NONLINEAR EQUATIONS 

In this tutorial we provide a collection of numerical methods for solving nonlinear 
equations using Scilab. 

 

 

Level 
     

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. 
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Step 1: The purpose of this tutorial 

The purpose of this Scilab tutorial is to provide a collection of numerical 

methods for finding the zeros of scalar nonlinear functions. The methods 

that we present are: 

 Bisection; 

 Secant; 

 Newton-Raphson; 

 Fixed point iteration method. 

These classical methods are typical topics of a numerical analysis course 

at university level. 

 

 

 

 

 

 

An introduction to 
 
 

NUMERICAL ANALYSIS USING SCILAB 
 
 

solving nonlinear equations 
 

Step 2: Roadmap 

This tutorial is composed of two main parts: the first one (Steps 3-10) 

contains an introduction about the problem of solving nonlinear equations, 

presents some solution strategies and introduces properties and issues of 

such problems and solutions. The second part (Steps 11-23)  is dedicated 

to the specific methods, equipped with many Scilab examples.  

 

 

  
 

Descriptions Steps 

Introduction and solution strategies 3-6 

Conditioning and convergence 7-10 

Bisection method 11-12 

Secant method 13-14 

Newton method 15-18 

Fixed point iteration method 19-22 

Conclusions and remarks 23-25 
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Step 3: Introduction 

Many problems that arise in different areas of engineering lead to the 

solution of scalar nonlinear equations of the form 

 ( )    

i.e. to find a zero of a nonlinear function. 

 

Nonlinear equations can have none, one, two, or an infinite number of 

solutions. Some examples are presented on the right. 

 

 

 

 

 

Note: A special class of nonlinear equations is constituted by polynomials 

of the form 

 ( )     
       

              . 

 

 

 

 

 

 

  
 

 

(Linear chirp function       (     (    
 

 
  )) with infinite zeros) 

 
 
 
 

 
(Function      ( )     (  ) with one zero) 

 
 

The code of the examples is available in the file ex1.sce 
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Step 4: Solution strategies 

Many solution methods exist and the correct choice depends on the type 

of function  . For example, different methods are used whether   is a 

polynomial or it is a continuous function whose derivatives are not 

available. 

 

 

Moreover, the problem can be stated in equivalent formulations. For 

example, the original formulation  ( )    can be converted into a fixed 

point formulation of the form     ( ) or into a minimization problem of 

the form       ( ). 

 

 

It is important to note that even if these formulations are mathematically 

equivalent (their zeros are the same ones), the numerical methods used 

to approximate the solution do not have all the same behavior. 

 

 

 

Hence, the numerical solution strategy should take into account the kind 

of problem we try to solve. 

 

 

 

 

Example of equivalent formulations: 

 

Original problem: 

 ( )         

 

 

Examples of fixed point formulation: 

 

  
 

 
 

or  

 

  
 

 
(  

 

 
) 

 

Example of minimization formulation: 

 

   
 

(    )  
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Step 5: Graphical interpretation and separation of zeros 

The first step of many numerical methods for solving nonlinear equations 

is to identify a starting point or an interval where to search a single zero: 

this is called “separation of zeros”. If no other information is available, this 

can be done by evaluating the function   at several values    and plotting 

the results  (  ).  

 

Solving the problem  ( )    is equivalent to find the solutions of the 

following system 

{
   ( )
   

 

i.e., graphically, to determine, in a Cartesian plane, the intersections of the 

graph of the function    ( ) with the  -axis. 

 

In the case of fixed point formulation     ( ) its graphical formulation is 

related to the system 

{
   ( )
   

 

i.e. the solutions are given by the intersections of the function    ( ) 

with the bisector    . 

 

 
 

 
(Separation of zeros of the original problem:        ) 

 
 

 

(Fixed point equivalent formulation:   
 

 
(  

 

 
)) 

 
The code of the example is available in the file ex2.sce 
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Step 6: Example of a bracketing strategy 

Bracketing is an automatic strategy for finding intervals containing a zero 

of a given function  .   An example of bracketing is given in the following 

lines of code; the idea is to identify the points in which the function 

changes sign: 

 

function xsol=fintsearch(f, xmin, xmax, neval) 

    // Generate x vector 

    x = linspace(xmin, xmax, neval)'; 

    // Evaluate function  

    y = f(x); 

     

    // Check for zeros 

    indz = find(abs(y)<=1000*%eps); 

    y(indz) = 0; 

     

    // Compute signs 

    s = sign(y); 

    // Find where f changes sign      

    inds = find(diff(s)~=0); 

    // Compute intervals 

    xsol = [x(inds),x(inds+1)]; 

endfunction 

 

 

 

 The code is also available in the file fintsearch.sci, while the example 

can be found in fintsearch_test.sce. 

 

 
 
 
 
 

 
(Separation of zeros for the function  ( )      ( )) 
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Step 7: Conditioning of a zero-finding problem 

The conditioning of a zero-finding problem is a measure of how it is 

sensitive to perturbations of the equation. 

Here we denote by   a zero of the function  ( ), i.e.  ( )   . 

 

From the first figure on the right we can intuitively see that if the derivative 

|  ( )| is “large” the problem is well-conditioned. In this case we can 

clearly identify the zero of  , even if there are rounding errors. Conversely, 

if the derivative is “small”, the zero-finding problem is said to be ill-

conditioned and there is no clear identification of the zero. In this case, if 

rounding errors are present, the zero is spread up over a “large” interval of 

uncertainty. 

 

In summary, we can state the following: 

 The conditioning number of the root finding problem is   |  ( )|; 

 The problem is ill-conditioned if   |  ( )| is large, i.e. |  ( )| is 

small. 

 

In the graphic on the right down  we can see that the zero      of 

 ( )                        can not be identified because 

of ill-conditioning. 

 

 

The code of the example is available in the file ex3.sce 

 
 

 
(Example of well- and il- conditioned root finding problem) 

 

 
(Given a very ill-conditioned problem, the unique zero cannot be 

identified) 
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Estimating the conditioning of the problem of finding a (single) zero   of a 

(continuously differentiable) function  ( ) means to provide an estimate of 

the relative error of a perturbed solution.  

Finding the zero   of a function  ( ), i.e.  ( )   , is equivalent (for 

continuously differentiable functions) to solving the inverse problem 

      ( ). 

If we consider a perturbed solution  ̃, i.e.  ( ̃)    or, equivalently, 

 ̃      ( ), making an error   on its evaluation, we have the following 

error: 

    ̃       ( )     ( ) 

Using the following Taylor expansion 

   ( )     ( )  (   ( ))
 
 (   )    

and the elation obtained on the right 

(   ( ))
 
 

 

  ( )
   

the error can be written as 

      ( )  (   ( ))
 
       ( )  (   ( ))

 
   

 

  ( )
 

 

Hence, the relative error can be stated as 

|
  

 
|  |

 

  ( )
|  |

 

 
| 

 

 

The code of the example on the right is available in the file ex4.sce 

 
Original problem: 
 

Find   such that  ( )    i..e.       ( ) 
 
Perturbed problem: 

 
Find  ̃ such that  ( ̃)    i..e.  ̃      ( ) 

 
 

Inverse function: 

 
(Example of inverse function) 

 
The function and its inverse are related from the relation 
 

   ( ( ))   (   ( ))    

 
and the derivative of the inverse function satisfies the relation 
 

(   ( ))    ( )     i.e. (   ( ))  
 

  ( )
       (where    ( )) 
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Step 8: Convergence rates of iterative methods 

Typically, methods for approximating nonlinear equations are based on 

iterative strategies, i.e. starting from an initial guess solution   , and 

computing a sequence of solutions      that converge to the desired 

solution    (where  (  )   ), i.e. 

                   

 

We define the rate of convergence   of the sequence as  

   
   

|        |

|      | 
    

   

|     |

|  |
 

   

 
for some constant     and     .   is called the asymptotic error 

constant while    is the error at the     iteration. 
 

If      and     the convergence is called linear. We require     to 

ensure the convergence of the method indeed the error must be reduced 

at each iteration as explained by this relation: 

|     |   |   |    ( |     |)    |     |        |   | 

Here we  compare the n+1-th step error with the initial error. 

If       the convergence is called superlinear. 

 

If     the convergence is called quadratic. 

 The following figure shows a typical convergence rate profile where we can 

identify three different regions: 

 an exploration region: in this region there is an exploration of the 

solution space trying to find an initial guess solution (starting point) 

where convergence properties are guaranteed, and, moreover, there 

is no significant reduction of the error; 

 a convergence region: the basin of attraction of the solution; 

 a stagnation region: this last region is due to round-off errors of the 

floating point system that are unavoidable. 

This figure stresses the fact that the definition of the convergence rate is 

valid only “in the convergence region”, hence it  is a local definition. 

 

 
(Typical behavior of a convergence rate profile) 
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Step 9: Examples of convergence rates 

Let us suppose we are looking for the zero     . 

Linear rate: 
Consider the following error model:  

     and      
 

  
        

 
In this case we get the following errors: 
 

      zero significant figures 

        one significant figures 

         two significant figures 

          three significant figures 

 
With a linear rate of convergence, the number of significant figures the 
method gains is constant at each step (a multiple of the iteration number). 
 
Quadratic rate: 
Consider the following error model:  

     and      
 

  
  
       

 
In this case we get the following errors: 
 

      zero significant figures 

        
one significant figures (one 
figure gained) 

          
three significant figures (two 
figures gained) 

              
seven significant figures 
(four figures gained) 

 
With a quadratic rate of convergence, the number of significant figures the 
method gains at each iteration is twice the previous iteration. 

 

 

A comparison of the typical rate of convergence (when rounding errors are 

present) is shown in the following figure: 

 

 
(Comparison between linear, superlinear and quadratic rate of 

convergence) 

 

The number of figures gained per iteration can be summarized in the 

following table: 

Convergence rate Figures gained per iteration 

Linear Constant 

Superlinear Increasing 

Quadratic Double 

 

The code of the example is available in the file ex5.sce 
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Step 10: Convergence criteria 

When we approximate a solution with an iterative method it is necessary 

to choose how to properly stop the algorithm and hence provide the 

solution. As each evaluation of the function can be computationally 

expensive, it is important to avoid unnecessary evaluations (for instance, 

avoiding evaluations in the stagnation region). 

 

 

The convergence criteria reported on the right refer to the following 

problem: 

 Find a solution    such that  (  )    starting from an initial guess 

(    (  )), with    in       . 

 

 

The design criteria are based on the absolute or relative error for the 

variable   or for the value of the function  . The difference between a 

criterion based on   or   depends on the conditioning of the nonlinear 

problem, while a choice based on the absolute or relative error depends 

on the scaling of the nonlinear equations.  

In our example, we consider the relative errors for f and x they are 

adimensional, i.e. they allow to avoid multiplicative constants. 

 
 
 

 

 

 
 
Example of convergence criteria: 
 

 Absolute error between two iterates on  : 
|       |     

 

 Relative error between two iterates on  : 
|       |       

 
 

 Absolute residual on  : 
| (  )|     

 

 Relative residual on  : 
| (  )|      (  ) 

 
 
 
 
 

Example of implementation of a stopping criterion: 

// Check for convergence 

if (abs(fxnew)/fref < ftol) | (abs(dx)/xref < xtol) 

    // The root is found 

    x = xnew; 

    fx = fxnew; 

    end 

The code checks the convergence both on   and  . If we are dealing with an 

ill-conditioned problem it is likely that   will not converge, so the check on   

will stop the iterative method.  
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Step 11: Bisection method 

Supposing we are looking for a zero of a continuous function, this method 

starts from an interval [a,b] containing the solution and then evaluates the 

function at the midpoint m=(a+b)/2. Then, according to  the sign of the 

function, it moves to the subinterval [a,m] or [m,b] containing the solution 

and it repeats the procedure until convergence. 

The main pseudo-code of the algorithm is the following: 

Algorithm pseudo-code 

while ((b - a) > tol) do 

 m = (a + b)/2 

 if sign(f(a)) = sign(f(m)) then 

  a = m 

 else 

  b = m 

 end 

end1 

The figure on the right refers to the first 4 iterations of the bisection 

method applied to the function  ( )       in the interval [1,2]. The 

method starts from the initial interval [a,b]=[1,2] and evaluates the function 

at the midpoint m=1.5. Since the sign of the function in m=1.5 is equal to 

the sign of the function in b=2, the method moves to the interval 

[a,m]=[1,1.5], which contains the zero. At the second step, it  starts from 

the interval [a,b]=[1,1.5], it evaluates the function at the midpoint m=1.25 

and it moves to the interval [1.25, 1.5]. And so on. 

 

The function is available in the file bisection.sci, while the example can 

be found in bisection_test.sce. 

 
 

 
(Example of the first four iterations of the bisection method) 
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Step 12: Convergence of the bisection method 

At each iteration of the method the searching interval is halved (and 

contains the zero), i.e.  

(     )  
         

 
 

         

 
   

 

  
(     ) 

Hence, the absolute error at the nth iteration is 

|  |  |     |  
(     )

 
 

 

    
(     ) 

and the converge |  |    is guaranteed for    . 

 

Observe that at each iteration the interval is halved, i.e. (     )  
(         )

 
, but this relation does not guarantee that |    |  |  | (i.e. 

monotone convergence to   ) as explained in the figure below. 

 

However, we define the rate of the convergence for this method linear. 

The figure on the right shows the relative error related to the iterations 

(reported in the table below) of the method applied to the function 

 ( )       in the interval [1,2] where the analytic solution is √ . As 

expected, the method gains 1 significant figure every 3/4 iterations. 

 

 
 

 
(Relative error of the bisection method) 

 

 
(Iterations of the bisection method) 
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Step 13: Secant method 

Supposing we are looking for a zero of a continuous function, this method 

starts from two approximations (  ,  (  )) and (     (  )) of the unknown 

zero (     (  )   ) and computes the new approximation    as the zero 

of the straight line passing through the two given points. Hence,    can be 

obtained solving the following system: 

{

   (  )

 (  )   (  )
 

    

     

   

 

giving  

(   )      
 (  )(     )

 (  )   (  )
 

Once the new approximation is computed, we repeat the same procedure 

with the new initial points (    (  )) and (    (  )). 

The iterative formula is  

        
 (  )(       )

 (  )  (    )
. 

The figures on the right refer to the first four iterations of the method for 

the function  ( )       with initial guess values        and     .  

 

The function is available in the file secant.sci, while the example can be 

found in secant_test.sce.  

 
 

 
(First four iterations of the secant method) 
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Step 14: Convergence of the secant method  

The main pseudo-code of the algorithm is the following: 

Algorithm 

xkm1 = x0; fkm1 = f(x0)  // Step: k-1 

xk = x1; fk = f(x1)  // Step: k 

xkp1 = xk   // Initialization 

iter = 1   // Current iteration 

while iter <= itermax do 

 iter = iter+1 

 xkp1 = xk-(fk*(xk-xkm1))/(fk-fkm1) 

 if abs(xkp1-xk)<tol break // Converg. test 

 xkm1 = xk; fkm1 = fk 

 xk = xkp1; fk = f(xkp1) 

end 

The algorithm iterates until convergence or until the maximum number of 

iterations is reached. At each iteration only one function evaluation is 

required. The “break” statement terminates the execution of the while 

loop. 

For the secant method it is possible to prove the following result: if the 

function   is continuous with continuous derivatives until order 2 near the 

zero, the zero is simple (has multiplicity 1) and the initial guesses    and 

   are picked in a neighborhood of the zero, then the method converges 

and the convergence rate is equal to   
  √ 

 
 (superlinear). 

The figure on the right shows the relative error related to the iterations 

(reported in the table below) of the method applied to the function 

 ( )       in the interval [1,2], where the analytic  solution is √ .   

 
 

 
(Relative error of the secant method) 

 
 
 

 
(Iterations of the secant method) 
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Step 15: Newton method 

Supposing we are looking for a zero of a continuous function with 

continuous derivatives, this method starts from an approximation    of the 

unknown zero    and computes the new approximation    as the zero of 

the straight line passing through the initial point and tangent to the 

function. Hence,    can be obtained solving the following system: 

 

{
   (  )   (    )              (  )

   
 

giving  

(   )      
 (  )

  (  )
 

Once the new approximation is computed, we repeat the same procedure 

with the new initial point   . The iterative formula is then  

        
 (  )

  (  )
. 

The figures on the right refer to the first four iterations of the method for 

the function  ( )       with initial guess value       . 

 

The function is available in the file newton.sci, while all the examples 

related to this method can be found in newton_test.sce. 

 
 

 
(First four iterations of the Newton method) 
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Step 16: Convergence of the Newton method  

The main pseudo-code of the algorithm is the following: 

Algorithm 

xk = x0; 

iter = 1   // Current iteration 

while iter <= itermax do 

 iter = iter+1 

 xkp1 = xk-f(xk)/f’(xk) 

 if abs(xkp1-xk)<tol break // Converg. test 

 xk = xkp1; 

end1 

The algorithm iterates until convergence or the maximum number of 

iterations is reached. At each iterations a function evaluation with its 

derivative is required. The “break” statement terminates the execution of 

the while loop. 

For the newton method it is possible to prove the following results: if the 

function f is continuous with continuous derivatives until order 2 near the 

zero, the zero is simple (has multiplicity 1) and the initial guess    is 

picked in a neighborhood of the zero, then the method converges and the 

convergence rate is equal to     (quadratic). 

The figure on the right shows the relative error related to the iterations 

(reported in the table below) of the method applied to the function 

 ( )       in the interval [1,2], where the analytic solution is √ . As 

expected, the number significant figures doubles at each iteration. 

 
 

 
(Relative error of the Newton method) 

 
 
 
 
 

 
(Iterations of the Newton method) 
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Step 17: Newton method (loss of quadratic convergence) 

A zero    is said to be multiple with multiplicity   if  

 (  )    (  )         (  )      and   (  )   . 

In the Newton method, if the zero is multiple, the convergence rate 

decreases from quadratic to linear. As an example, consider the function 

 ( )     with zero     . Then the Newton method can be stated as 

 

        
  

 

   

 
  

 
 

 
giving the error  
 

            
  

 
 

 
which is clearly linear. 
 
 
On the right we report an example of loss of quadratic convergence 
applied to the function  

 ( )  (   )      
 

which has a zero of multiplicity 2 in     . 

The relative error shows a linear behavior, indeed the method gains a 

constant number of significant figures every 3 or 4 iterations. 

 
 
 

 

 

 

 
(Function with a zero of multiplicity 2) 

 
 

 
(Loss of quadratic convergence) 
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Step 18: Newton method (Global convergence) 

If the function of which we are looking for the zeros and its derivatives until 

order 2 are continuous, it is possible to ensure the global convergence of 

the Newton method by choosing a proper initial guess point. 

As reported in the table on the right, under the above mentioned 

hypothesis it is possible to identify a neighborhood   of the zero such 

that, for each initial guess    in  , the sequence      is monotonically 

decreasing (or increasing) to the zero.  

For instance, if the function is convex and increasing (second row and 

second column case in the table), the Newton method with an initial guess 

picked on the right of the zero converges monotonically decreasing  to the 

unknown zero. 

The Newton method with the above choosing criterion also ensures that 

all      are well defined, i.e. the method does not generate any point in 

which the function is not defined (an example in which the monotonicity of 

the convergence is important is the logarithm function, which is not 

defined for negative values). 

 

 
 
 
 
 
 

Function 
properties 

  ( )    
(decrease) 

  ( )    
(increase) 

   ( )    
(concave) 

 

 
 

 

 

(Right domain) (Left domain) 

   ( )    
(convex) 

 

 
 

 

 
 

(Left domain) (Right domain) 

 
(How to choose the initial guess for global convergence) 
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Step 19: Fixed point iteration method 

The fixed point iteration method transforms the original problem  ( )    

into the problem    ( ) and solves it using an iterative scheme of the 

form: 

      (  ). 

 

If the iterative scheme converges to the value   , i.e.     (  ), then    is 

also a zero of  ( ), since  (  )      (  )   . 

Solving the equation    ( ) is equivalent to solve the following system 

{
   ( )
   

 

 

On the right we reported some graphical examples of iterations applied to 

6 different functions  . The three examples on the left show cases in 

which the method converges to the unknown zero, while among the 

examples on the right there is no convergence of the method, even if the 

functions seem to be quite similar to the ones on the left. 

 
 

 
 

Note: The Newton method is a particular case of fixed point iteration 

method where  (  )     
 (  )

  (  )
.  

 
 

 
(Graphical examples of iterations applied to 6 different functions  ) 
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Step 20: Fixed point iteration method - example #1 

The example on the right refers to the function  ( )      , where the 

considered fixed point iteration is 

      (  )  
         

 

  
 

Here the relative error shows a linear behavior of the method, while on the 

right we can see the first four iterations of the method. 

 
(Relative error and iterations of the fixed point iteration method) 

The function is available in the file fixedpoint.sci, while the example can 

be found in fixedpoint_test.sce. 

 
 

 

 
(First four iterations of the fixed-point iteration method)) 
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Step 21: Convergence of the fixed point iteration method 

It is possible to prove that the sequence      converges to    if  

|  ( )|      (i.e. it is a contraction) in the interval   containing the 

initial guess and    for all   (i.e.  ( )   ). Moreover, in this case, it is 

possible to prove that the solution    is the unique solution in the interval   

of the equation  ( )   . While, if |  ( )|    in the whole interval  , the 

sequence does not converge to the solution (even if we start very close to 

the zero   ). 

 

The convergence rate of the fixed point iteration method is: 

 If   (  )   , the method has a linear convergence rate; 

 If   (  )    and    (  )   , the method has a quadratic 

convergence rate; 

 

 

 
Example: The fixed point iteration method applied to the Newton method 
with fixed point function 

 ( )    
 ( )

  ( )
 

with  (  )    and   (  )    shows a quadratic rate of convergence, 

indeed we have   (  )    and    (  )    (  ( )    
  ( )  ( )  ( )   ( )

(  ( ))
 ). 

 

 
 
 
Proof of convergence (idea) 
Using the Taylor formula we have 
 

    (  )            (  )   (  )  (     ) 
 (  )

    (  )            (  )   (  )  (     ) 
 (  )

   
    (    )            (  )   (    )  (       ) 

 (    )

 

 
where    are unknown values in the intervals (     ). If the derivatives are 
bounded by the relation 

|  (  )|    
the error can be written as 

|  |  (     )    |    |    
i.e. 

|  |    |  | 
where          is the initial error. 
 
 
Proof of convergence rate (idea) 

Assuming  ( )       and using the Taylor formula we have 
 

      (  )   (  )

   (  )   
 

 
   (  )  

    
 

  
 ( )(  )  

  
 

(   ) 
 (   )( )  

    

 
where    (     ) and   (     ). 

If   (  )    we have a linear rate of convergence of the sequence, i.e. 

      
|    |

|  |
   (  ). 

If   (  )    and    (  )    we have a quadratic rate of convergence of the 

sequence, i.e. 

      
|    |

|  | 
 

 

 
   (  ). 



 

Nonlinear equations www.openeering.com page 23/25 

Step 22: Fixed point iteration method - example #2 

This example refers to the zero of the function 

 ( )     
 
    

which is             .  

Starting from this function it is possible to write different kinds of fixed 

point iterations: 

1.    
 

    with  ( )   
 

   : This function shows a linear 

behavior of convergence (blue line), indeed the derivative 

    (  )             ; 

2.   (   )  with  ( )  (   ) : This function does not 

converge (red line), indeed the derivative   (  )             ; 

 

3.   
       

        with  ( )  
       

       : This function shows a quadratic 

rate of convergence (purple line), indeed the derivative   (  )   . 

The initial guess is equal to     . 

 

 

 

Also this second example can be found in the file fixedpoint_test.sce. 

 
 

 
(Original function) 

 
 

 
(Relative error for different fixed point iterations) 
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Step 23: Comparison of the methods – an example 

This example refers to the zero of the function 

 ( )           ( )    

which is                    . 

In the figure on the right we can see a typical result on relative errors, in 

step with the rates of convergence discussed earlier for the different 

methods. 

At a first glance, one might think that the Newton method should be 

always chosen, since its convergence is the best one, but it has to be 

considered that this method needs the computation of the derivative, 

which could require the evaluation of the original function, which can be 

numerically very expensive. 

 

 

 

The source code of this example can be found in the file main_fcn.sce. 

 

 
 

 
(Nonlinear test function) 

 

 
(Relative error of the 4 methods) 
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Step 24: Concluding remarks and References 

In this tutorial we have collected a series of numerical examples written in 

Scilab to tackle the problem of finding the zeros of scalar nonlinear 

equations with the main methods on which are based the state-of-the-art 

algorithms. 

On the right-hand column you may find a list of references for further 

studies. 

  

1. Scilab Web Page: www.scilab.org. 

 

2. Openeering: www.openeering.com. 

 

3. K. Atkinson, An Introduction to Numerical Analysis, John Wiley, New 

York, 1989. 

 
 
 
 
 

 

Step 25: Software content 

To report a bug or suggest some improvement please contact the 

Openeering team at the web site www.openeering.com. 

 

 

 

 

Thank you for your attention, 

Anna Bassi and Manolo Venturin 

 
-------------- 

Main directory 

-------------- 

ex1.sce  : Examples of zero-finding problems 

ex2.sce  : Examples of separation and fixed point 

ex3.sce  : Example on conditioning 

ex4.sce  : Example of inverse function 

ex5.sce  : Examples of convergence rates 

fintsearch.sci : Search intervals 

fintsearch_test.sce : Test for search intervals 

bisection.sci : Bisection method 

bisection_test.sce : Test for the bisection method 

secant.sci : Secant method 

secant_test.sce : Test for the secant method 

newton.sci : Newton-Raphson method 

newton_test.sce : Test for the Newton-Raphson method 

fixedpoint.sci : Fixed point iteration method 

fixedpoint_test.sce : Tests for the fixed point iteration method 

main_fcn.sce : Comparison of methods 

license.txt : License file 
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