

www.openeering.com

powered by

NUMERICAL ANALYSIS USING SCILAB:
NUMERICAL STABILITY AND CONDITIONING

In this Scilab tutorial we provide a collection of implemented examples on
numerical stability and conditioning.

Level

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Numerical stability and condition www.openeering.com page 2/12

Step 1: The purpose of this tutorial

The purpose of this tutorial is to provide a collection of Scilab examples

that are typically part of numerical analysis courses.

Here we provide some classical examples on numerical stability and

conditioning.

An introduction to

NUMERICAL ANALYSIS USING SCILAB

(numerical stability and conditioning)

Step 2: Roadmap

In this tutorial we provide the definitions of well-conditioned problem and

stable algorithm and some related examples. These examples are useful

to understand how much attention we have to pay when selecting a

numerical solution method for a given problem.

Descriptions Steps

Condition of problems 3

Condition examples 4-6

Stability of algorithms 7

Stability example 8-11

Conclusions and remarks 12-13

Numerical stability and condition www.openeering.com page 3/12

Step 3: Conditioning of a problem

Numerical stability and conditioning are two concepts that should not be

confused.

A problem is called well-conditioned if a small perturbation of the input
data (relative error), leads to small variations of the results (relative error),
i.e. of the same magnitude order.

On the other hand, an ill-conditioned problem strongly amplifies the input

relative error in the output dataset.

Denoting by the problem under consideration, if represents the input

data and the output results, it is possible to define the condition

number of the problem through the following inequality:

‖ ‖

‖ ‖
 ()

‖ ‖

‖ ‖

where ‖ ‖ is a given norm which is able to measure the involved

quantities. The condition number bounds the propagation of the input

relative error in the output results, it is closely related to the maximum

accuracy that can be attained in the solution. Whenever or ,

the condition number is defined as

‖ ‖ () ‖ ‖.

Conditioning refers to the numerical problem and there is no connection

with the rounding error and the solution strategy.

The numerical solution strategy should take into account the kind of

problem we are trying to solve.

A graphical comparison is shown on the right.

(Well-conditioned versus ill-conditioned problem)

As an example, from the previous tutorial we have the following inequality:

 () () (

| |

| |
 ()

| |

| |
 ())

That is:
 () { } (() ())

where we have defined

| |

| |
 is the condition number relative to the input ;

| |

| |
 is the condition number relative to the input y.

From this inequality, when the condition numbers and grows

up to infinity and hence the relative error on the result can be arbitrarily huge.

Numerical stability and condition www.openeering.com page 4/12

Step 4: Example: Intersection of two straight lines

In this example we consider the intersection of two straight lines and

given by the equations:

and

The intersection point is (). Now, if we change the coefficient of the

second straight line from to , the new solution becomes
().
If we analyze the relative error of the system, we can see that the input

relative error is approximately
‖ ‖

‖ ‖

| |

| |
 , while the

relative errors on the solution are for the variable and

 for respectively. These values can be considered too high
when compared to the order of magnitude of the input error. This is due to
the fact that the two straight lines and are almost parallel (ill-
conditioned).

Now, let’s consider the system where is replaced by the orthogonal line
 to the line ,

 .

Using the previous perturbation, the solution now moves from () to
(). In this case we have the same relative input error, but

the relative errors on the solution are for the variable and

 for , which can be considered small (same order of
magnitude of the input). This is due to the fact that the two straight lines

and are almost orthogonal (well-conditioned).

The Scilab script is reported in the function stabline.sce.

(Example of an ill-conditioned problem)

(Example of a well-conditioned problem)

Numerical stability and condition www.openeering.com page 5/12

Step 5: Zeros of polynomials

In this example we consider the problem of finding the real zeros of the

polynomial

 () ()()()()()()

and of () and (), which are obtained changing the coefficient of

first with and then with .

As we may notice in the figure on the right, in () and () some roots

are moved from real to imaginary.

The Scilab script is reported in the function stabpoly.sce.

(Example of stability for zeros of a polynomial)

(Roots of the three polynomials)

Numerical stability and condition www.openeering.com page 6/12

Step 6: Exercise #1

Let’s consider the following polynomial

 () ()

which has 7 unitary roots for .

Plot, in a complex plane, the roots of () for different values of .

Hint: Use the Scilab function logspace to distribute the value of in a log

space subdivision between 10
-8

 and 1. The function logspace(d1,d2, [n])

distributes n points between 10
d1

 and 10
d2

.

The Scilab script with the solution is reported in the function ex1.sce.

(Results on roots perturbation with varying in [10

-8
,1])

Numerical stability and condition www.openeering.com page 7/12

Step 7: Numerical stability

To solve a given problem we use a certain algorithm and its numerical

implementation. Sometimes many algebraically equivalent solution

strategies are available, but numerically they can lead to different results.

This is due to computer’s arithmetic, which can propagate errors in a more

or less relevant way (see the Openeering tutorial on numerical errors).

Algorithms that do not magnify these errors are said to be numerically

stable.

On the other hand, if an algorithm is numerically unstable, at a given

point, the errors do not remain bounded and tend to grow up in an

uncontrolled way corrupting completely the final result.

Hence, even when a problem is well-conditioned, if we try to solve it with

an unstable algorithm, the obtained results will be meaningless.

The following examples refer to a comparison between stable and

unstable algorithms for two given problems.

(Stable and unstable algorithm with respect to a solution obtained

using an exact analytical procedure with an infinite number of digits)

Numerical stability and condition www.openeering.com page 8/12

Step 8: Example of integral computation

In the next two steps, we compare two algorithms solving the following

integral:

∫

 ()

Both algorithms are based on the following theoretical considerations:

 ∫

;

 ;

(the integrand)

Numerical stability and condition www.openeering.com page 9/12

Step 9: Example of integral computation (unstable
formulation)

The first strategy is to develop an algorithm based on the following

recursive formula:

 For we have:

∫

() ;

 For we can used integration by parts having

(∫

 []
 ∫

)

The developed program starts from , where .

To perform the error analysis we denote by
 the approximate

value of the integral at step with respect to the exact value and

making an error . Hence, it is possible to write the following recursive

formula for the error

 (

) () (
)

and , with respect to the first error , is

 ()

As a consequence, even if is small, the error grows up to infinity as a

factorial.

(Absolute value of)

Numerical stability and condition www.openeering.com page 10/12

Step 10: Example of integral computation (stable
formulation)

The second strategy is to develop an algorithm based on the following

recursive formula:

 For we set:

 ;

 For we rewrite the previous recursive formula

in terms of as follows:

()

The developed program starts from and computes as the last
integral.

To perform the error analysis we denote by
 the approximate

value of the integral at step with respect to the exact value and

making an error . Hence, it is possible to write the following recursive

formula for the error

 (

) () (
)

giving

 . Hence can be expressed in terms of as

()

As a consequence, even if is “big”, the error decreases to zero, since

we have a factorial as denominator.

(Value of . The code for this plot is in intdemo.sce)

Numerical stability and condition www.openeering.com page 11/12

Step 11: Exercise #2

Considering the stable formulation, plot the relative error for starting

from for different values of in the range [].

The relative error on is computed as

|

 |

|
 |

 where depends on and
 .

(Relative error of the approximation of depending on . Note that the

values are visible only until N=17, after that limit the values are less
then %eps and are not visible in a logarithmic scale)

Numerical stability and condition www.openeering.com page 12/12

Step 12: Concluding remarks and References

In this tutorial we have collected a series of numerical examples written in

Scilab for the study of numerical stability.

 1. Scilab Web Page: Available: www.scilab.org.

2. Openeering: www.openeering.com.

3. J. Higham, accuracy and Stability of Numerical Algorithms, SIAM

4. Atkinson, An Introduction to Numerical Analysis, Wiley

Step 13: Software content

To report a bugs or suggest improvements please contact Openeering

team at the web site www.openeering.com.

Thank you for your attention,

Silvia Poles and Manolo Venturin

Main directory

stabline.sce : Stability for line intersection

stabpoly.sce : Stability for polynomial

intdemo.sce : Integral computation example

ex1.sce : Solution of exercise #1

ex2.sce : Solution of exercise #2

license.txt : The license file

http://www.scilab.org/
http://www.openeering.com/
http://www.openeering.com/

