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NUMERICAL ANALYSIS USING SCILAB: 
NUMERICAL STABILITY AND CONDITIONING 

In this Scilab tutorial we provide a collection of implemented examples on 
numerical stability and conditioning. 

Level 
     

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. 
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Step 1: The purpose of this tutorial 

The purpose of this tutorial is to provide a collection of Scilab examples 

that are typically part of numerical analysis courses. 

Here we provide some classical examples on numerical stability and 

conditioning. 

 

 

 

 

 

 

 

 

An introduction to 
 
 

NUMERICAL ANALYSIS USING SCILAB 
 
 

(numerical stability and conditioning) 
 

Step 2: Roadmap 

In this tutorial we provide the definitions of well-conditioned problem and 

stable algorithm and some related examples. These examples are useful 

to understand how much attention we have to pay when selecting a 

numerical solution method for a given problem. 
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Step 3: Conditioning of a problem 

Numerical stability and conditioning are two concepts that should not be 

confused. 

 

A problem is called well-conditioned if a small perturbation of the input 
data (relative error), leads to small variations of the results (relative error), 
i.e. of the same magnitude order. 
 

On the other hand, an ill-conditioned problem strongly amplifies the input 

relative error in the output dataset. 

Denoting by   the problem under consideration, if   represents the input 

data and   the output results, it is possible to define the condition 

number of the problem through the following inequality: 

‖  ‖

‖ ‖
     ( )  

‖  ‖

‖ ‖
 

where ‖ ‖ is a given norm which is able to measure the involved 

quantities. The condition number bounds the propagation of the input 

relative error in the output results, it is closely related to the maximum 

accuracy that can be attained in the solution. Whenever     or     , 

the condition number is defined as 

‖  ‖      ( )  ‖  ‖. 

Conditioning refers to the numerical problem and there is no connection 

with the rounding error and the solution strategy. 

The numerical solution strategy should take into account the kind of 

problem we are trying to solve.  

A graphical comparison is shown on the right. 

 
 

 

(Well-conditioned versus  ill-conditioned problem) 

As an example, from the previous tutorial we have the following inequality: 
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That is:                    
 (   )     {     } (  ( )   ( )) 

 
where we have defined  

    
| |

|   |
 is the condition number relative to the input  ; 

    
| |

|   |
 is the condition number relative to the input y. 

 
From this inequality, when       the condition numbers    and    grows 

up to infinity and hence the relative error on the result can be arbitrarily huge. 
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Step 4: Example: Intersection of two straight lines 

In this example we consider the intersection of two straight lines    and    

given by the equations: 

                    

and  
                   

 
 
The intersection point is (        ). Now, if we change the coefficient of the 

second straight line from     to     , the new solution becomes 
(             ). 
If we analyze the relative error of the system, we can see that the input 

relative error is approximately 
‖  ‖

‖ ‖
 

|        |

|   |
         , while the 

relative errors on the solution are           for the variable   and 

          for   respectively. These values can be considered too high 
when compared to the order of magnitude of the input error. This is due to 
the fact that the two straight lines    and    are almost parallel (ill-
conditioned). 

 

Now, let’s consider the system where    is replaced by the orthogonal line 
   to the line   ,  

                       . 
 

Using the previous perturbation, the solution now moves from (       ) to 
(              ). In this case we have the same relative input error, but 

the relative errors on the solution are           for the variable   and 

          for  , which can be considered small (same order of 
magnitude of the input). This is due to the fact that the two straight lines    

and    are almost orthogonal (well-conditioned). 

 

The Scilab script is reported in the function stabline.sce. 

  

 
(Example of an ill-conditioned problem) 

 
 

 
(Example of a well-conditioned problem) 
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Step 5: Zeros of polynomials 

In this example we consider the problem of finding the real zeros of the 

polynomial 

 ( )  (   )(   )(   )(   )(   )(   )

                                     
 

and of   ( ) and   ( ), which are obtained changing the coefficient of    

first with      and then with     . 

 

As we may notice in the figure on the right, in   ( ) and   ( ) some roots 

are moved from real to imaginary. 

 

 

The Scilab script is reported in the function stabpoly.sce. 

 

 
 
 

 
(Example of stability for zeros of a polynomial) 

 
 

 
(Roots of the three polynomials) 
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Step 6: Exercise #1 

Let’s consider the following polynomial 

 

  ( )  (   )    

 

which has 7 unitary roots for    .  

 

 

Plot, in a complex plane, the roots of   ( ) for different values of  . 

 

 

Hint: Use the Scilab function logspace to distribute the value of   in a log 

space subdivision between 10
-8

 and 1. The function logspace(d1,d2, [n]) 

distributes n points between 10
d1

 and 10
d2

. 

 

 

 

The Scilab script with the solution is reported in the function ex1.sce. 

 

 

 

 

 

 
(Results on roots perturbation with   varying in [10

-8
,1] ) 
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Step 7: Numerical stability 

To solve a given problem we use a certain algorithm and its numerical 

implementation. Sometimes many algebraically equivalent solution 

strategies are available, but numerically they can lead to different results. 

This is due to computer’s arithmetic, which can propagate errors in a more 

or less relevant way (see the Openeering tutorial on numerical errors).  

 

Algorithms that do not magnify these errors are said to be numerically 

stable. 

 

On the other hand, if an algorithm is numerically unstable, at a given 

point, the errors do not remain bounded and tend to grow up in an 

uncontrolled way corrupting completely the final result. 

 

Hence, even when a problem is well-conditioned, if we try to solve it with 

an unstable algorithm, the obtained results will be meaningless. 

 

The following examples refer to a comparison between stable and 

unstable algorithms for two given problems. 

 

 

 

 

 
(Stable and unstable algorithm with respect to a solution obtained 

using an exact analytical procedure with an infinite number of digits) 
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Step 8: Example of integral computation 

In the next two steps, we compare two algorithms solving the following 

integral: 

   
 

 
∫  

 

 

               (       ) 

 

Both algorithms are based on the following theoretical considerations: 

      ∫     
 

 
 

 

   
; 

 

 

        ; 

 

 

            

 

 

 

 

 

 

 

 

 
(the integrand) 
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Step 9: Example of integral computation (unstable 
formulation) 

The first strategy is to develop an algorithm based on the following 

recursive formula: 

 For     we have: 

   
 

 
∫    

 
    

 

 
(    )       ; 

 

 For     we can used integration by parts having 

   
 

 
(∫  

 

 

     [    ] 
   ∫    

 

 

    )          

The developed program starts from    , where       . 

 

To perform the error analysis we denote by   
        the approximate 

value of the integral at step   with respect to the exact value    and 

making an error   . Hence, it is possible to write the following recursive 

formula for the error 

     
     (       

 )  (       )    (    
      )         

and   , with respect to the first error   , is  

   (  )        

 

As a consequence, even if    is small, the error    grows up to infinity as a 

factorial. 

 

 

 
(Absolute value of   ) 
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Step 10: Example of integral computation (stable 
formulation) 

The second strategy is to develop an algorithm based on the following 

recursive formula: 

 For     we set:  

    ; 

 

 For     we rewrite the previous recursive formula            

in terms of     as follows: 

     
 

 
(    ) 

The developed program starts from       and computes    as the last 
integral. 

 

To perform the error analysis we denote by   
        the approximate 

value of the integral at step   with respect to the exact value    and 

making an error   . Hence, it is possible to write the following recursive 

formula for the error 

     
     (       

 )  (       )    (    
      )         

giving      
 

  
  . Hence    can be expressed in terms of    as 

   
(  )   

  
   

As a consequence, even if    is “big”, the error    decreases to zero, since 

we have a factorial as denominator. 

 

 

 
(Value of   . The code for this plot is in intdemo.sce) 



 

Numerical stability and condition www.openeering.com page 11/12 

Step 11: Exercise #2 

Considering the stable formulation, plot the relative error for    starting 

from       for different values of   in the range [    ]. 

The relative error on    is computed as 

       
|  

        |

|  
     |

 where    depends on   and   
         . 

 
 
 
 
 
 
 

 
(Relative error of the approximation of    depending on  . Note that the 

values are visible only until N=17, after that limit the values are less 
then %eps and are not visible in a logarithmic scale) 
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Step 12: Concluding remarks and References 

In this tutorial we have collected a series of numerical examples written in 

Scilab for the study of numerical stability. 

 

 

 1. Scilab Web Page: Available: www.scilab.org. 

 

2. Openeering: www.openeering.com. 

 

3. J. Higham, accuracy and Stability of Numerical Algorithms, SIAM 

 

4. Atkinson, An Introduction to Numerical Analysis, Wiley 

 

 

Step 13: Software content 

To report a bugs or suggest improvements please contact Openeering 

team at the web site www.openeering.com. 

 

 

 

 

Thank you for your attention, 

Silvia Poles and Manolo Venturin 

 

 

-------------- 

Main directory 

-------------- 

stabline.sce : Stability for line intersection 

stabpoly.sce : Stability for polynomial 

intdemo.sce : Integral computation example 

ex1.sce  : Solution of exercise #1 

ex2.sce  : Solution of exercise #2 

license.txt : The license file 
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