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Introduction

We implement in SCILAB a probabilistic method to solve elliptic PDE’s
based on the Feynman-Kac representation formula.

This method is not implemented in most of the commercial math
softwares (i.e. Matlab), though is widely used in many applications.

It is very easy to implement within SCILAB, showing that Scilab is an
ideal framework to designe efficient, cheap and innovative algorithms.
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Scilab for PDEs and Stochastics

Xcos has a block devoted to PDEs. It deals with 2-dimensional PDEs
using classical finite differences or finite elements methods,
parameters can be tuned by the user.

An advanced course on Monte Carlo methods and simulation in
Scilab is available at

http://www.math.u-bordeaux1.fr/ pdelmora/lectures.html
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Heat Equation: initial value problem

{
∂tu −∆u = 0, (t, x) ∈ D

u(x , 0) = f (x)

describes the evolution of the temperature of a body without external
energy exchange.

f (x , 0) is the inital temperature at the point x

u(x , t) is the temperature at the point x at time t

The equation can be derived from the basic principles of thermodynamics:

First law of thermodynamics

Conservation of energy

Fourier’s law
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Classical methods

Finite differences: iteratively solve a finite differences equation that
approximates the PDE

Finite elements: refined design of the approximating mesh.

Fourier methods: are based on the study of the eigenfunctions of
the Laplacian operator ∆.
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Brownian motion

Should be thought as a random curve t 7→ Bt with the largest possible
amount of randomness. It is the prototype of stochastic process. It is
characterized by few simple properties :

Continuous trajectories

Independent increments Bt − Bs⊥B[0,s]

Stationary increments Bt+h − Bt
d
= Bs+h − Bs ∀h.
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Brownian motion
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Feynman-Kac formula

A surprising connection beetween stochastic processes and PDE’s. First pointed
out by Feynman to solve the Schrödinger equation

Feynman-Kac formula
Let u be a solution of: {

∂tu + b∂xu + σ2∂2
xxu − vu + f = 0,

u(x , 0) = f (x)

Then u has the following representation:

u(t, x) = Ex (f (Xt))

where Xt is the solution of the diffusion:

dXt = b(t,Xt)dt + σ(t,Xt)dBt

A special case of this formula is the Black and Scholes formula, the
cornerstone of financial mathematics.
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Feynman-Kac formula

Feynman-Kac formula (Brownian motion)

Let u be a solution of: {
∂tu − 1

2∂
2
xxu = 0,

u(x , 0) = f (x)

Then u has the following representation:

u(t, x) = E (f (x + Bt))

where Bt is the Brownian Motion and E is the expectation operator

SOLVE HEAT EQUATION ⇔ COMPUTE EXPECTATIONS OF BM

Problem: How to approximate expectations?
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Monte Carlo methods

Very robust tool first introduced in Physics.
They are based on the Law of large numbers:

LLN

Let
{
B i
t

}
be independent, identically distributed as Bt Then:

lim
N→+∞

1

N

N∑
i=1

f (B i
t) = E (f (Bt))

Scilab offers the Toolbox labostat to implement the Monte Carlo
method
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Numerical issues for Monte Carlo

A priori estimates

The Central Limit Theorem (CLT) gives us an estimate on the rate of
convergence

In many cases Large Deviations techniques guarantee that the probability
of falling out of a fixed tolerance interval decay exponentially fast.

Practical tricks

Make sure you have a good pseudo-random number generator

Change of measure, Variance reduction (Polynomial chaos)
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Method sketch

1 Simulate a N trajectories of the Brownian motion (B i
s)s∈[0,t],i≤N

2 Compute the average of f shifted by x on the sample:

ũN(t, x) =
1

N

N∑
k=1

f (x + B i
t)

Just a few properties of the method:

It does not suffer of the curse of dimensionality. Indeed the only approximation is
isample size.

It is not an iterative method, i.e. to compute the value of ũN at a specific point
(t, x) you do not need to know anything about the values of ũN at other sites (cfr.
finite differences)

It is very simple to implement, it costs 0.00000 Euro.

It is competitive, (ask your Finance division or Physics Dept)
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Heat spread through a metal plate
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Heat spread through a metal plate
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1-Dimensional heat equation, time-space plot
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(Multiscale) Conclusions

Microscopic: We have seen an example of a classical domain of
applications where mixing a bit of technical knowledge and high
quality open source software gives good results, with minmal costs.

Macroscopic: Don’t like PDE’s? Quite possible!
Howhever, the methodology we adopted has very little to do with
the specific problem considered.

1 Search for ”state of the art” theoretical methods.

2 Implementation of the methods or use existing code certified by a
community of experts

Giovanni Conforti (Berlin Mathematical School) Solving elliptic PDEs with Feynman-Kac formula 19 / 20



Thank you for the attention
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