
University of Verona

DEPARTMENT OF COMPUTER SCIENCE

Master Degree in Mathematics

Polynomial Chaos Expansion
with applications to PDEs

Candidate:

Gregorio Pellegrini
VR368398

Thesis advisor:

Marco Caliari PhD

Thesis co-advisor:

Manolo Venturin PhD
EnginSoft S.p.A.

a.y. 2013/2014





Personal Information

For any question, suggestion or information please contact Gregorio Pellegrini at

gregorio.pellegrini@gmail.com

iii



iv



Contents

Abstract vi

1 Orthogonal Polynomials 1

1.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Properties of orthogonal maximal systems . . . . . . . . . . . . . . . . . . . . . . 14

2 Polynomial Chaos Expansion 17

2.1 One dimensional Polynomial Chaos Expansion . . . . . . . . . . . . . . . . . . . 17
2.2 Properties of gPC basis and PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Example: decomposition of a Lognomal random variable . . . . . . . . . . 21
2.2.2 Weak convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Multidimensional gPC basis and PCE . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 PCE of random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 A multi-element approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Decomposing the range of a scalar random variable . . . . . . . . . . . . . 27
2.5.2 A Multi-Element Polynomial Chaos . . . . . . . . . . . . . . . . . . . . . 30

3 Non-intrusive Spectral Projection 33

3.1 Motivation: Uncertainty Quanti�cation . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Univariate NISP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Univariate quadrature formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Scilab's NISP toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 NISP toolbox features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 De�nition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Problem data de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.3 Design of Experiment (DOE) . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.4 Polynomial Chaos de�nition and computation . . . . . . . . . . . . . . . . 37
3.5.5 Post process analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Multivariate NISP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 NISP approach for output random vector . . . . . . . . . . . . . . . . . . . . . . 42

4 Application of NISP toolbox 43

4.1 Bimodal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Arcsine distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 PCE decomposition of an arcsine distribution . . . . . . . . . . . . . . . . 43
4.1.3 Mixture of random variables . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.4 PCE for Mixture of two normal random variables . . . . . . . . . . . . . . 46

4.2 Non-linear ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



vi CONTENTS

4.2.2 First order ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 PCE of the output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 A null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.5 A negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.6 A positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Lid-Driven Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Freefem++ solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 PCE for lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Pyclaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A General topics: random variables, histograms and softwares 69

A.1 Equally distributed random variables . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Histogram of multi-element PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Scilab's shell (sh) command execution . . . . . . . . . . . . . . . . . . . . . . . . 70
A.4 Installation of Pycalw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.5 On vector ordering: Fortran, C++ and Scilab . . . . . . . . . . . . . . . . . . . . 73



Abstract

In this thesis polynomial chaos expansion (PCE) is studied for both univariate and multivariate
cases. This technique recovers a �nite second order random variable by means of a linear com-
bination of orthogonal polynomials, whose entries are a selected class of random variables called
germs or basic random variables. The choice of these entries characterizes the orthogonality
property achieved by these functional polynomials.

This approach approximates either a random variable of interest or the output of a process
in presence of uncertain inputs. Moreover PCE belongs to Uncertainty Quanti�cation (UQ)
methods, which aim to de�ne suitable theoretical background and reliable numerical methods
in order to consider the e�ects of uncertainties in simulations. The classical Monte Carlo ap-
proach constitutes the �rst example of such methodology, but it requires lots of simulations to
get reliable results, while polynomial chaos expansion is an e�cient alternative to overwhelm low
convergence rate.

The coe�cients of PCE are detected via Non-Intrusive Spectral Projection (NISP), that uses
suitable simulations of the process to compute such values. While Monte Carlo requires lots of
evaluations to have appropriate convergence, NISP achieves spectral convergence with few sim-
ulations. Since the process is run for �xed realizations of the input parameters, it is not recast
into a probabilistic framework. This motivates the non-intrusive nature of such approach.

Such theory is applied to four examples which concern: the decomposition of two bimodal
random variables, the analysis of the solution for a non-linear ordinary di�erential equation
(ODE), when random physical parameter is considered, and the description of the solutions of
two partial di�erential equations (PDEs) in presence of uncertain parameters.

Their study and analysis were made during an internship at EnginSoft S.p.A., a consulting
�rm in the �eld of Simulation Based Engineering Science (SBES). This was the starting point for
investigating the theoretical properties of PCE in order to describe the features and advantages
of NISP approach.

The presented routines are implemented in Scilab environment, which is a free and open
source software for numerical computation providing powerful computing tools for engineering
and scienti�c applications.

On the other hand the data, used for detecting the spectral projection, are computed via
functions implemented within Scilab and with two open source softwares: FreeFem++ a partial
Di�erential Equation (PDE) solver based on the Finite Element Method and Pyclaw, a hyperbolic
PDE solver based on Finite Volume Method. These situations cover most of the possible type of
data sources.

Scilab functions represent the possibility to de�ne all features of the solver considered, while
FreeFem++ scripts allow to de�ne only the basic properties of the solver, such as the type space
on which the solution is recovered and the boundary conditions; but it does not explicitly show
how the solution is computed. Pyclaw is an example of a black-box: the solver and the problem
are already implemented, only marginal data can be customized by the user, such as physical
quantities and the size of the mesh.

The �nal results of this thesis concern both theoretical issues and applications. The most
important theoretical features of PCE are deeply analyzed, keeping particular attention on the

vii



viii CONTENTS

relation between the basic random variables and the quantity that one wishes to recover. More-
over the multi-element approach described makes use of the already de�ned PCE (it is not
followed the technique developed by Wan and Karniadakis in [17], that implies the de�nition of
new orthogonal polynomials).

The presented examples prove the �exibility of NISP technique, indeed it is applied both to
decomposition of random variables and to approximation of the solution of the two most common
classes of di�erential equations, ODEs and PDEs. Moreover NISP interfaces with three possible
data sources, described above.

As last remark it is pointed out, especially in the last example, how NISP interacts with
respect to deterministic simulation, highlighting the importance of taking into account the un-
certainties into model simulations.



Chapter 1

Orthogonal Polynomials

In this chapter de�nitions, properties and approximation results of Legendre and Hermite orthog-
onal polynomials are discussed. Moreover only univariate setting is considered. The detection
of multivariate orthogonal polynomials is based on section II in [11], that makes use of tensor
products of univariate orthogonal families.

1.1 Settings

Orthogonal polynomials are de�ned in Hilbert spaces, since the notion of orthogonality is well
de�ned by means of scalar product. The univariate real-valued polynomials are de�ned on a
real interval D. Moreover they belong to L2(D,w(x)dx), where w(x) is the weight function
that characterizes the orthogonality condition. The class of Legendre polynomials is de�ned on
D = [−1, 1] and for

w(x) = 1/2

while for Hermite class D = R and the weight function is of kind

w(x) = e−α
2x2

where α is a positive scaling factor. Their de�nition in terms of this parameter α is useful for
some applications as described in Tang [5]. With suitable values of α the two most common
classes of Hermite polynomials are achieved, namely the physicists' and probabilists' Hermite
polynomials. They are respectively characterized by

w(x) =
1√
2π
e−

x2

2 w(x) =
1√
π
e−x

2

For any f, g ∈ L2(D,w(x)dx), the scalar product is characterized by the weight function w(x)

〈f, g〉 =

∫
D

f(x)g(x)w(x)dx (1.1)

usually it is referred as 〈·, ·〉w, but to shorten the notation, it would be the contest that charac-
terizes the weight function involved.

Once the scalar product is set, the orthogonal polynomials are computed via Gram-Schmidt
orthogonalization procedure.

De�nition 1.1 The Gram-Schmidt orthogonalization procedure in L2(D,w(x)dx) applied to the
basis B of polynomials of degree at most n

B = {1, x, . . . , xn}

de�nes an orthogonal family of monic polynomials Hn = {Ψi}ni=0 which are linear independent
elements in L2(D,w(x)dx).

1



2 CHAPTER 1. ORTHOGONAL POLYNOMIALS

The Gram-Schmidt algorithm is de�ned recursively, by setting Ψ0 = 1, and then, for each
natural index i > 0

Ψ1 = x− α10Ψ0

...

Ψi = xi −
i−1∑
j=0

αijΨj

where the coe�cients αij are de�ned as

αij =

〈
xi,Ψj

〉
〈Ψj ,Ψj〉

(1.2)

Let us denote with H the basis de�ned via Gram-Schmidt procedure. Following the approach
presents by Gautschi in [3], some properties of general orthogonal system of polynomials can be
stated. First let us de�ne P as the space of real-valued univariate polynomials.

Theorem 1.1 If the inner product is positive de�nite on P, there exists a unique sequence
{Ψj}j∈N of monic orthogonal polynomials.

Proof. For each i ∈ N Gram-Schmidt orthogonalization procedure de�nes

Ψi = xi −
i−1∑
j=0

αijΨj

By equation (1.2) the coe�cients are always de�ned, and the algorithm detects uniquely these
orthogonal polynomials. �

Since the scalar product of L2(D,w(x)dx) is positive de�nite for all functions in L2(D,w(x)dx),
the assumption of the previous theorem is always ful�lled, thus unique class of orthogonal and
monic polynomials are de�ned for each weight function.

Lemma 1.1 If the weight function w(x) is symmetric about y-axis and it is de�ned on a sym-
metric domain D, then the j-th orthogonal polynomial Ψj satis�es

Ψj(−x) = (−1)jΨj(x)

Thus being even or odd polynomial depends on the parity of j.

Proof. Let Ψ̂j := (−1)jΨj for all indexes j ∈ N, then by computing the inner product〈
Ψ̂j , Ψ̂i

〉
= (−1)i+j 〈Ψj ,Ψi〉 = δij ‖Ψi‖2

hence {Ψ̂j}j∈N is another family of polynomials orthogonal in L2(D,w(x)dx). By Theorem 1.1

for all j ∈ N, Ψ̂j = Ψj , hence
Ψj(−x) = (−1)jΨj(x)

�

De�nition 1.2 If {un}n∈N is a sequence of real values, then its generating function is a real
function u(t) such that

u(t) =

∞∑
n=0

unt
n

for |t| < R, where R is the radius of convergence of the series.



1.2. LEGENDRE POLYNOMIALS 3

Example. Let us consider a geometric sequence un = an, then

∞∑
n=0

antn =
1

1− at

with radius of convergence

R =
1

|a|

Proposition 1.1 Let {uk}k∈N be a sequence whose generating function is u(t) and let m be a
positive integer, then for t 6= 0 and |t| < R

∞∑
k=0

uk+mt
k =

1

tm

[
u(t)−

m−1∑
j=0

ujt
j

]

Proof. By the very de�nition of generating function we get

u(t) =

∞∑
j=0

ujt
j =

m−1∑
j=0

ujt
j +

∞∑
j=m

ujt
j

By substituting k = j −m

u(t)−
m−1∑
j=0

ujt
j = tm

∞∑
k=0

uk+mt
k

and by dividing both term of the equation by tm, we get

1

tm

u(t)−
m−1∑
j=0

ujt
j

 =

∞∑
k=0

uk+mt
k

�

1.2 Legendre polynomials

Univariate Legendre polynomials are usually de�ned on the compact set D = [−1, 1], and they
ful�ll the orthogonal condition with respect to scalar product de�ned in (1.1), where the weight
function is

w(x) =
1

2

1.2.1 De�nitions

By De�nition 1.1 Legendre polynomials are detected via Gram-Schmidt orthogonalization proce-
dure. Notice that the weight function as well as the domain satis�es the assumptions of Lemma
1.1, thus it is possible to simplify the computations of coe�cients αij in Gram-Schmidt algorithm.
Indeed

〈
xi, Pj

〉
=

∫ 1

−1

xiPj
1

2
dx

it is null if i and j have di�erent parities. Moreover by equation (1.2) for the same indexes
i and j, the coe�cients αij are null. Applying these strategies, the �rst four monic Legendre



4 CHAPTER 1. ORTHOGONAL POLYNOMIALS

polynomials are easily detected

P0 = 1

P1 = x− α10P0 = x

P2 = x2 − α21P1 − α20P0 = x2 − α20P0 = x2 − 1

3

P3 = x3 − α32P2 − α31P1 − α30P0 = x2 − α31P1 = x3 − 3

5
x

P4 = x4 − α43P3 − α42P2 − α41P1 − α40P0 = x4 − α42P2 − α40P0 = x4 − 6

7
x2 +

3

35

This de�nition of Legendre polynomials is not the common one, usually orthogonality is
described as a property of such family, not the main issue that allows to de�ne them. Therefore
let us investigate the equivalences between the most common de�nitions

Theorem 1.2 Let {Pn}n∈N be a class of polynomials in L2([−1, 1], w(x)dx). The following
statements are equivalent

(i) The family satis�es the recurrence relation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (1.3)

with P0 = 1 and P1 = x

(ii) the generating function is

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)tn (1.4)

for x ∈ [−1, 1] and |t| ≤ 1.

Such family {Pn}n∈N is the collection of Legendre polynomials.

Proof.

(i) =⇒ (ii)
Let x ∈ [−1, 1] be a �xed value. Then Qx(t) denotes the generating function of the
sequence of real values {Pn(x)}n∈N. By De�nition 1.2

Qx(t) =

∞∑
n=0

Pn(x)tn

then it is derived term by term, with respect to t and the result is multiplied by t, getting

tQ′x(t) =

∞∑
n=1

nPn(x)tn

Let us multiply the recurrence relation (1.3) by tn+1 and sum it from n = 1 to n =∞

∞∑
n=1

(n+ 1)Pn+1(x)tn+1 =

∞∑
n=1

[
(2n+ 1)xPn(x)− nPn−1(x)

]
tn+1

By expanding the summands on the right-hand side

∞∑
n=1

(n+ 1)Pn+1(x)tn+1 = 2xt

∞∑
n=1

nPn(x)tn +

∞∑
n=1

xPn(x)tn+1 −
∞∑
n=1

nPn−1(x)tn+1



1.2. LEGENDRE POLYNOMIALS 5

After relabeling m = n + 1 on left-hand side and by setting k = n − 1 to the last two
summands of the right-hand side, the equation can be recast as

∞∑
m=2

mPm(x)tm = 2xt

∞∑
n=1

nPn(x)tn +

∞∑
k=0

xPk+1(x)tk+2 −
∞∑
k=0

(k + 1)Pk(x)tk+2 =

= 2xt

∞∑
n=1

nPn(x)tn + t2
[ ∞∑
k=0

xPk+1(x)tk −
∞∑
k=0

(k + 1)Pk(x)tk
]

=

= 2xt

∞∑
n=1

nPn(x)tn + t2
∞∑
k=0

[
xPk+1(x)tk − (k + 1)Pk(x)tk

]
The equation achieved is

∞∑
m=2

mPm(x)tm = 2xt

∞∑
n=1

nPn(x)tn + t2
∞∑
k=0

[
xPk+1(x)tk − (k + 1)Pk(x)tk

]
(1.5)

The summand of previous equation can be de�ned in terms of Qx(t) and its derivative

∞∑
m=2

mPm(x)tm = tQ′x(t)− P1(t)x = tQ′x(t)− xt

and
∞∑
k=0

(k + 1)Pk(x)tk = tQ′x(t) +Qx(t)

while

t

∞∑
k=0

Pk+1(x)tk = Qx(t)− P0(t) = Qx(t)− 1

by applying Proposition 1.1. Thus let us plug these results into equation (1.5)

tQ′x(t)− tx = 2xt2Q′x(t) + tx(Qx(t)− 1)− t2
(
tQ′x(t) +Qx(t)

)
that yields to

Q′x(t) = − t− x
1− 2tx+ t2

Qx(t)

By integrating the di�erential equation with Qx(0) = P0(x) = 1 as initial condition, the
explicit formula for Qx(t) is achieved

1√
1− 2xt− t2

= Qx(t) =

∞∑
n=0

Pn(x)tn

which converges whenever |t| ≤ 1.

(ii) =⇒ (i)
Let us di�erentiate the equation (1.4) with respect to t

x− t
(1− 2xt− t2)3/2

=

∞∑
n=0

nPn(x)tn−1

It can be done term by term, since |t| ≤ 1. Multiplying both sides by 1 − 2xt + t2 and
recognizing the generating function times (x− t) in the left-hand side, it yields to

(x− t)
∞∑
n=0

Pn(x)tn = (1− 2xt+ t2)

∞∑
n=0

nPn(x)tn−1



6 CHAPTER 1. ORTHOGONAL POLYNOMIALS

expanding all products

∞∑
n=0

xPn(x)tn −
∞∑
n=0

Pn(x)tn+1 =

∞∑
n=0

nPn(x)tn−1 −
∞∑
n=0

2nxPn(x)tn +

∞∑
n=0

nPn(x)tn+1

Then by equating the coe�cients of each tn term and by algebraic simpli�cations we get

(2n+ 1)xPn(x)− nPn−1(x) = (n+ 1)Pn+1(x)

�

The easiest way to get the class of Legendre polynomials is using the recurrence formula in
(1.3), hence

P0(x) = 1

P1(x) = x

P2(x) =
1

2

(
3x2 − 1

)
P3(x) =

1

2

(
5x3 − 3x

)
P4(x) =

1

8

(
35x4 − 30x2 + 3

)

At �rst Legendre polynomials were de�ned as the unique class of polynomials that is orthog-
onal with respect the the scalar product (1.1). Hence the family {Pn}n∈N de�ned by Theorem
1.2 coincides, up to a scalar factor, with the one coming from De�nition 1.1, if orthogonality
property is proven.

1.2.2 Properties

Proposition 1.2 Let us consider the class of Legendre polynomials {Pn}n∈N, then for all
n,m ∈ N ∫ 1

−1

Pn(x)Pm(x)
1

2
dx = δnm

1

2n+ 1

Proof. The square of the equation (1.4) is

1

1− 2xt+ t2
=

∞∑
m=0

∞∑
n=0

tmtnPm(x)Pn(x)

Let us integrate from −1 to 1 both sides of previous equation. Notice that the right-hand side
can be integrate term by term, by uniform convergence of power series for x ∈ [−1, 1]. Then
developing the integral on left-hand side

− 1

2t

[
ln(1− 2tx+ t2)

]1
−1

=

∞∑
m=0

∞∑
n=0

tm+n

∫ 1

−1

Pn(x)Pm(x)dx

Hence evaluating the left-hand side

−1

t
ln

(
1− t
1 + t

)
=

∞∑
m=0

∞∑
n=0

tm+n

∫ 1

−1

Pn(x)Pm(x)dx (1.6)

Moreover since |t| ≤ 1 the left-hand side of the previous equation can be replaced with the
di�erence of the two Taylor expansions of ln(1 + t) and ln(1− t).Thus the left-hand side becomes

−1

t
ln

(
1− t
1 + t

)
=

1

t

∞∑
k=0

2t2n+1

2n+ 1
=

∞∑
k=0

2t2n

2n+ 1
(1.7)



1.2. LEGENDRE POLYNOMIALS 7

By equating the coe�cients of the right-hand sides of (1.6) and (1.7), two possibilities arise: if
n 6= m

0 =

∫ 1

−1

Pn(x)Pm(x)dx

If m = n
2

2n+ 1
=

∫ 1

−1

(Pn(x))
2
dx

then the lemma is proven by dividing both sides of the previous equations by two. �

The next step proves that the class of orthonormal Legendre polynomials constitutes a Hilbert
basis for L2([−1, 1], w(x)dx). The proof is based on the Theorem at page 74 of [1], where the
maximality of a basis in Hilbert spaces is equivalent to density of the linear subspace spanned
by the orthonormal family considered.

The proof requires two well known results. The �rst one is the Weierstrass approximation
theorem.

Theorem 1.3 (Weierstrass) Every continuous function on a closed interval [−1, 1] can be uni-
formly approximated by polynomials on [−1, 1].

The uniform convergence ensures convergence in L2([−1, 1], w(x)dx) for continuous functions.
Indeed let f ∈ C0 ∩L2([−1, 1], w(x)dx), by Weierstrass theorem for every real ε > 0, there exists

a polynomial p such that ‖f − p‖2∞ < ε/2. Hence

‖f − p‖2L2([−1,1],w(x)dx) =

∫ 1

−1

(f − p)2 1

2
dx ≤ ‖f − p‖2∞ <

ε

2
(1.8)

The second step is based on density theorem for Lebesgue spaces.

Theorem 1.4 Let 1 ≤ p < +∞ and Ω be an open set in R. The set of continuous functions
with compact support is dense in Lp(Ω)

Let us consider an open interval Ω in R, such that [−1, 1] ⊂ Ω. Then any function
f ∈ L2([−1, 1], w(x)dx) can be extended to zero on Ω, de�ning f ∈ L2(Ω), indeed∥∥f∥∥2

L2(Ω)
= ‖f‖2L2([−1,1]) = 2 ‖f‖2L2([−1,1],w(x)dx) (1.9)

By Theorem 1.4 for every real ε > 0, there exists a continuous function g on Ω with compact
support, such that ∥∥f − g∥∥2

L2(Ω)
< ε (1.10)

Let us de�ne the continuous function g(x) as the restriction of g to [−1, 1]. By equation (1.9)
the relation between the two norms in L2([−1, 1]) and L2([−1, 1], w(x)dx) implies that

‖f − g‖2L2([−1,1]) = 2 ‖f − g‖2L2([−1,1],w(x)dx) (1.11)

Moreover
∥∥f − g∥∥2

L2(Ω)
≥ ‖f − g‖2L2([−1,1]), thus combining this observation with results in (1.10)

and (1.11) for a continuous function g

‖f − g‖2L2([−1,1],w(x)dx) <
ε

2
(1.12)

Let us consider the polynomial p, that comes from Weierstrass theorem upon setting the same
real ε/2 > 0 of equation (1.12). By triangular inequality

‖f − p‖2L2([−1,1],w(x)dx) ≤ ‖f − g‖
2
L2([−1,1],w(x)dx) + ‖g − p‖2L2([−1,1],w(x)dx) (1.13)



8 CHAPTER 1. ORTHOGONAL POLYNOMIALS

the �rst summand of right-hand side is already estimated in (1.12), as well as the second one by
means of observation in (1.8). Therefore

‖f − p‖2L2([−1,1],w(x)dx) < ε (1.14)

Furthermore let us call n the degree of p. The Gram-Schmidt orthogonalization procedure ensures
that the linear spaces on R generated by {1, x, . . . , xn} and {P0, . . . , Pn} are the same. Therefore
p can be expressed as a linear combination of �rst n Legendre polynomials.

1.3 Hermite polynomials

In literature two classes of orthogonal Hermite polynomials are de�ned: probabilists' and physi-
cists'. They are de�ned on whole real line D = R, while their weight function w(x), for scalar
product de�nition (see (1.1)), is respectively

w(x) =
1√
2π
e−

x2

2 w(x) =
1√
π
e−x

2

In both cases the system of Hermite polynomials is a maximal orthogonal family in L2(R, w(x)dx).
Since in applications only the class of physicists' Hermite polynomials is used, the discussion is
restricted to this family. Nevertheless the same arguments apply to prove properties of the other
class in the corresponding Hilbert space.

1.3.1 De�nitions

Let us de�ne the family of physicists' Hermite polynomials.

Theorem 1.5 The following de�nitions are equivalent.

(i) For every n ∈ N

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(1.15)

this is also called Rodrigues's formula.

(ii) For every �xed x ∈ R

e2xt−t2 =

∞∑
n=0

Hn(x)

n!
tn (1.16)

which is the generating function of {Hn(x)}n∈N.

(iii) If H0(x) = 1 and H1(x) = 2x, then for every natural index n = 2, 3, . . .

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

Moreover, for all n ∈ N
H ′n(x) = 2nHn−1(x)

The family {Hn}n∈N is called the class of physicists' Hermite polynomials.

Proof.

(i) =⇒ (ii)

The results of (1.15) are polynomials, since the n-th derivative of e−x
2

has at least n

summands, each of them formed by a polynomial multiplied by e−x
2

. The transcendent
function simpli�es when multiplied by ex

2

, leaving only summation of monomials.
The function e−x

2

is a �xed point of Fourier transform, therefore

e−x
2

=
1√
π

∫
R
e−t

2

e2xitdt



1.3. HERMITE POLYNOMIALS 9

moreover, since the derivatives with respect to x of the integrand are dominated by a
summable function, the theorem of derivation under integration sign yields to

dn

dxn
e−x

2

=
(2i)n√
π

∫
R
e−t

2

tne2xitdt

Thus

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

= ex
2 (−2i)n√

π

∫
R
e−t

2

tne2xitdt

Then, multiplying both sides by rn

n! and summing up for all n ∈ N
∞∑
n=0

Hn(x)

n!
rn =

∞∑
n=0

1

n!
rnex

2 (−2i)n√
π

∫
R
e−t

2

tne2xitdt

since
∞∑
n=0

1

n!
(−2irt)n

converges uniformly to e−2irt, the series pass under the integral sign, hence

∞∑
n=0

Hn(x)

n!
rn =

ex
2

√
π

∫
R

∞∑
n=0

(−2irt)n

n!
e−t

2

e2xitdt =

=
ex

2

√
π

∫
R
e−t

2

e−2irte2xitdt =

=
ex

2

√
π

∫
R
e−t

2

e2it(x−r)dt =

= ex
2

e−(x−r)2 =

= e2xr−r2

(ii) =⇒ (iii)
Let us set

F (x, r) = e2xr−r2

then by trivial computations
∂F

∂r
− (2x− 2r)F = 0

Hence by plugging the serial de�nition of the function F into the previous di�erential
equation, we get by property of series of powers

∞∑
n=1

Hn(x)

n!
nrn−1 = 2x

∞∑
n=0

Hn(x)

n!
rn − 2

∞∑
n=0

Hn(x)

n!
rn+1

Then by recasting all the powers and equating terms of kind rn, for n = 2, . . .

Hn+1(x)

n!
= 2x

Hn(x)

n!
− 2

Hn−1(x)

(n− 1)!

and hence
Hn+1(x) = 2xHn(x)− 2nHn−1(x)

To prove the other recurrence formula, the function F accomplishes

∂F

∂x
− 2rF = 0

Hence following the same procedure above, by di�erentiating the series term by term

∞∑
n=0

H ′n(x)

n!
rn − 2

∞∑
n=0

Hn(x)

n!
rn+1 = 0



10 CHAPTER 1. ORTHOGONAL POLYNOMIALS

and by equating the coe�cients of all terms rn for every �xed n ∈ N

H ′n(x)

n!
− 2

Hn−1(x)

(n− 1)!
= 0

eventually
H ′n(x) = 2nHn−1(x)

(iii) =⇒ (i)
Let us prove by induction that the polynomials achieved by Rodigues's formula are the
same of the polynomials de�ned via recurrence formula. The basic step of induction is
trivially proven by tabled Hermite polynomials.
Then let us consider the property of being equal true for all k ≤ n, k ∈ N. By exploiting
the recurrence in (iii):

Hn+1(x) = 2xHn(x)− 2nHn−1(x) = 2xHn(x)−H ′n(x)

Thus the inductive hypothesis applies to Hn and H ′n

Hn+1(x) = 2xHn(x)−H ′n(x) =

= 2x(−1)nex
2 dn

dxn
e−x

2

− (−1)n(2x)ex
2 dn

dxn
e−x

2

− (−1)nex
2 dn+1

dxn+1
e−x

2

=

= (−1)n+1ex
2 dn+1

dxn+1
e−x

2

Hence the formula (1.15) is achieved for n+ 1.

�
These equivalent de�nitions are used in di�erent settings: the recurrence formula is employed

for computing orthogonal polynomial, while the suitable one for describing properties of this
class is (1.16). The �rst four Hermite polynomials are

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

1.3.2 Properties

Orthogonality of {Hn}n∈N in L2(R, w(x)dx) is the �rst property proven, where

w(x) =
1√
π
e−x

2

is the weight function.

Proposition 1.3 Given the system of Hermite polynomials {Hn}n∈N. Then for n,m,∈ N∫
R
Hn(x)Hm(x)w(x)dx = δnm2nn!

Proof. By equation (1.16) for all |t| ≤ 1 and |s| ≤ 1

e2xt−t2 =

∞∑
n=0

Hn(x)

n!
tn e2xs−s2 =

∞∑
m=0

Hm(x)

m!
sm



1.3. HERMITE POLYNOMIALS 11

Therefore

e2xt−t2+2xs−s2 =

∞∑
n=0

∞∑
m=0

Hn(x)Hm(x)

m!n!
tnsm

Let us multiply both sides by e−x
2

and integrate on the real line∫
R
e2xt−t2+2xs−s2e−x

2

dx =

∞∑
n=0

∞∑
m=0

tnsm

m!n!

∫
R
Hn(x)Hm(x)e−x

2

dx (1.17)

The series passes out the integral sign since it is a uniform convergent power series. Therefore

∫
R
e−(x−s−t)2+2tsdx = e2st

∫
R
e−(x−s−t)2dx = e2st

∫
R
e−u

2

du = e2st
√
π =
√
π

∞∑
n=0

2nsntn

n!
(1.18)

by equating the coe�cients of the right-hand side of equations (1.17) and (1.18)∫
R
Hn(x)Hm(x)e−x

2

dx = δnm
√
π2nn!

the thesis is achieved by dividing both sides by
√
π.

�

Since the system of polynomials de�ned by Theorem 1.5 is orthogonal, it coincides up to a
constant, with the one de�ned via Gram-Schmidt orthogonalization procedure, see Theorem 1.1.

Let us prove that the set of physicists' Hermite polynomials is a maximal system in L2(R, w(x)dx).
A family H = {Hn}n∈N is said to be maximal if any function in L2(R, w(x)dx) such that f /∈ H
and orthogonal to each Hn for n ∈ N is the zero function.

Lemma 1.2 If f is an integrable function on R and

f̂(x) =

∫
R
f(t)eixtdt ≡ 0 (1.19)

then f = 0 almost everywhere

Proof. Let us multiply the left-hand side of (1.19) by e−ixa, where a is a �xed real number.∫
R
f(t)eix(t−a)dt = 0

By splitting the integration domain by means of a, and bringing on left-hand side one of the two
resulting integrals, the previous equation becomes∫ a

−∞
f(t)eix(t−a)dt = −

∫ +∞

a

f(t)eix(t−a)dt

Let us de�ne two functions for z = x+ iy:

L(z) :=

∫ a

−∞
f(t)eiz(t−a)dt R(z) = −

∫ +∞

a

f(t)eiz(t−a)dt

These complex functions are de�ned respectively for {=(z) ≤ 0} and {=(z) ≥ 0}. Indeed let us
consider L(z), then the integrand function is

f(t)ei(x+iy)(t−a) = f(t)eix(t−a)e−y(t−a)

since t ∈ (−∞, a] it is summable whenever y ≤ 0, therefore if {=(z) ≤ 0}. The same argument
applies to R(z).



12 CHAPTER 1. ORTHOGONAL POLYNOMIALS

Moreover L(z) is analytical on Z− = {z : =(z) < 0}. Indeed the integral, that de�nes L(z),
is absolute convergent if =(z) = y < 0. Then for every triangle T that lies in Z−∮

T

L(z)dz =

∮
T

∫ a

−∞
f(t)eitzdtdz

Fubini-Tonelli Theorem applies, since f(t)eitz is absolutely integrable on Z−, thus∮
T

L(z)dz =

∫ a

−∞
f(t)

∮
T

eitzdzdt = 0

the line integral over the triangle is null since eitz is an analytic function. Therefore by Morena
theorem L(z) is analytical whenever {z : z ∈ =(z) < 0}. By the same argument the analyticity
of R(z) on Z+ = {z : z ∈ =(z) > 0} is proven.

Let us de�ne F (z) as

F (z) =

{
L(z) =(z) ≤ 0

R(z) =(z) > 0

it is continuous at {z ∈ C : =(z) = 0}, due to dominated convergence theorem:

lim
y→0

L(x+ iy) =

∫ a

−∞
f(t)eix(t−a)dt = −

∫ +∞

a

f(t)eix(t−a)dt = lim
y→0

R(x+ iy)

Theorem 7.7 in [7] ensures that F (z) is entire on whole complex plane, moreover it is bounded
for every z ∈ C, by exploiting the integrability of f(t)

|L(z)| ≤
∫ a

−∞

∣∣∣f(t)eiz(t−a)
∣∣∣ dt ≤ ∫ a

−∞
e−y(t−a) |f(t)| dt ≤

∫
R
|f(t)| dt ≤ C

|R(z)| ≤
∫ +∞

a

∣∣∣f(t)eiz(t−a)
∣∣∣ dt ≤ ∫ +∞

a

e−y(t−a) |f(t)| dt ≤
∫
R
|f(t)| dt ≤ C

F (z) satis�es the assumptions of Liouville's theorem, thus F (z) is constant. In particular

lim
y→+∞

F (iy) = lim
y→+∞

−
∫ +∞

a

f(t)e−y(t−a)dt = 0

the limit passes under the integral sign by dominated convergence theorem. Therefore F (z) = 0
for all z ∈ C and in particular F (0) = 0, that yields to∫ a

−∞
f(t) = 0

for every a ∈ R, then f = 0 almost everywhere by Titchmarsh [8].
�

Lemma 1.3 Let f ∈ L2(R, w(x)dx), if for every n = 0, 1, 2, . . .∫
R
f(x)xnw(x)dx = 0

then f(x) = 0 almost everywhere in L2(R, w(x)dx).

Proof.

For any complex number z = t+ is, such that s ∈ (−M,M), the function

F (z) =

∫
R
eizxf(x)w(x)dx



1.3. HERMITE POLYNOMIALS 13

is entire, therefore it admits a series expansion of type

F (z) =

∞∑
i=0

cnz
n

where the coe�cients are computed via derivations of F . The assumption for derivation, with
respect to z variable, under integral sign are satis�ed, thus

cn =
1

n!
F (n)(0) =

1

n!
in
∫
R
xnw(x)f(x)dx

by assumption the right-hand side is zero, for all n ∈ N, therefore F (z) = 0, in particular,
restricting the function to <(z) = t

0 = F (t) =

∫
R
eitxf(x)w(x)dx

f(x)w(x) is integrable in R thus it accomplishes assumption of Lemma 1.2, implying that
f(x)w(x) = 0 almost everywhere with respect to Lebesgue measure. By positiveness of w(x),
the function f(x)

√
w(x) is zero almost everywhere. In other words

0 =
∥∥f√w∥∥2

L2(R)
=

∫
R
f2(x)w(x)dx = ‖f‖2L2(R,w(x)dx)

proving that is zero in L2(R, w(x)dx).

�
The two Lemmas above are used to prove the maximality of the set of physicists' Hermite

polynomials in L2(R, w(x)dx), where the weight function is w(x) = 1√
π
e−x

2

.

Theorem 1.6 The set of physicists' Hermite polynomials {Hn}n∈N is a Hilbert basis for L2(R, w(x)dx)

Proof.

Let us choose a function f ∈ L2(R, w(x)dx) such that for every n ∈ N

〈f,Hn〉 =

∫
R
f(x)Hn(x)w(x)dx = 0

by Gram-Schmidt orthogonalization procedure, for every n ∈ N

Hn = xn −
n−1∑
j=0

αnjHj

applying 〈f, ·〉 to both sides of the previous equation, it becomes

〈f,Hn〉 = 〈f, xn〉 −
n−1∑
j=0

αnj 〈f,Hj〉

by hypothesis 〈f,Hn〉 = 0 for all n ∈ N, hence∫
R
f(x)xnw(x)dx = 0

by Lemma (1.3) f = 0 in L2(R, w(x)dx), namely the maximality of {Hn}n∈N basis is proven.

�



14 CHAPTER 1. ORTHOGONAL POLYNOMIALS

1.4 Properties of orthogonal maximal systems

Other useful properties of Legendre and Hermite polynomials follow by maximality of the systems
considered. Since these properties are true for both classes let us use the notation developed
in section 1.1. L2(D,w(x)dx) denotes the Hilbert space where the polynomials are de�ned.
Moreover let

H = {Ψn(x)}n∈N (1.20)

be the maximal orthonormal family of polynomials.

From now on let U be an element of L2(D,w(x)dx). The orthogonal projection of U in the
closure of the linear space generated by {Ψ0, . . . ,ΨN} for a �xed N is de�ned as

PN (U) = UN =

N∑
i=0

ciΨi(x) (1.21)

where for each i = 1, 2, . . . , N the coe�cients are

ci = 〈U,Ψi〉 =

∫
D

U(x)Ψi(x)w(x)dx

De�nition 1.3 If U ∈ L2(D,w(x)dx) its Fourier coe�cients with respect to H are

ci = 〈U,Ψi〉 (1.22)

where i ∈ N

Notice that the �rst N generalized Fourier coe�cients coincide with the one de�ned in (1.21).
Moreover they satisfy the Parceval identity.

Theorem 1.7 (Parceval Identity) Let U be an element of L2(D,w(x)dx) and let H (1.20) be a
maximal and orthonormal family in L2(D,w(x)dx). If {ci}i∈N are its Fourier coe�cients, then

∞∑
i=0

|ci|2 = ‖U‖L2(D,w(x)dx)

The orthogonal projection in (1.21) allows to recover the best approximation of U on the �nite
dimensional subspace onto which is projected. Moreover PN (U) converges to U as N → +∞.

Theorem 1.8 Given a function U ∈ L2(D,w(x)dx). If UN is de�ned as in (1.21), then

lim
N→∞

‖U − UN‖L2(R,w(x)dx) = 0

Proof. The elements of H are orthonormal vectors in L2(D,w(x)dx), thus for a �xed h ∈ N

‖UN − UN+h‖2L2(D,w(x)dx) =

N+h∑
i=N+1

c2i

because of the convergence of
∑∞
k=0 c

2
k (Parceval identity), the sequence {UN}N∈N is Cauchy and

it converges to an element G ∈ L2(D,w(x)dx), since L2(D,w(x)dx) is a complete space.

Then it is enough to prove U and G are the same element in L2(D,w(x)dx). Let us consider
a �xed index k ∈ N such that N > k, moreover due to (1.21), ck = 〈UN ,Ψk〉. Then∫

D

G(x)Ψk(x)w(x)dx− ck =

∫
D

G(x)Ψk(x)w(x)dx−
∫
D

UN (x)Ψk(x)w(x)dx =

=

∫
D

[
G(x)− UN (x)

]
Ψk(x)w(x)dx ≤

≤ C
∫
D

[
G(x)− UN (x)

]2
w(x)dx



1.4. PROPERTIES OF ORTHOGONAL MAXIMAL SYSTEMS 15

the last step follows by Cauchy-Schwartz inequality and by Ψk ∈ L2(D,w(x)dx). Due to con-
vergence in norm of UN → G as N → +∞, for all k ∈ N∫

D

G(x)Ψk(x)w(x)dx− ck = 0

by plugging the very de�nition of ck (De�nition (1.3)) in the previous equation, we get∫
D

[
G(x)− U(x)

]
Ψk(x)w(x)dx = 0 k = 0, 1, 2 . . .

by maximality of H system G− U = 0 in L2(D,w(x)dx). Therefore they are the same element
in L2(D,w(x)dx).

�



16 CHAPTER 1. ORTHOGONAL POLYNOMIALS



Chapter 2

Polynomial Chaos Expansion

Generalized Polynomial Chaos (gPC) is a particular set of polynomials in a given random vari-
able, usually denoted by ξ, with which an approximation of a �nite second order random variable
is computed. This procedure is named Polynomial Chaos Expansion (PCE).

From a theoretical point of view the elements of gPC are functionals, since their entries are the
random variables ξ, moreover these mesurable functions characterize the measure of probability
used for computing the expansion. Not every random variable ξ allows to de�ne a gPC basis,
this topic is far from the purposes of this document but it is related with Hamburger moment
problem (see Ernst et al. in [14]).

The discussion is focused on a couple of measurable functions ξ: the gaussian distribution
N (0, 1/2) and the uniform U(−1, 1) random variable. It is also analyzed the link between gPC
basis and Legendre or Hermite polynomials, showing how the former inherits properties of the
latter.

This technique exploits orthogonal properties of polynomials involved, to detect a represen-
tation of random variables as series of functionals. From a computational point of view it is an
advantage, since polynomials are e�ciently implemented by softwares for numerical computation.

In this chapter the polynomial chaos expansion of real-valued random variables is investigated
starting from univariate case and passing to multivariate one.

2.1 One dimensional Polynomial Chaos Expansion

Let (Ω,Σ,P) be a probability space, where Ω is the abstract set of elementary events, Σ is a
σ-algebra of subsets of Ω and P is a probability measure on Σ.

De�nition 2.1 The space L2(Ω,Σ,P) is the Hilbert space of scalar real-valued random variables
X de�ned on (Ω,Σ,P) such that

E[X2] =

∫
Ω

(
X(ω)

)2
dP(ω) < +∞

Notice that, as for Lebesgue spaces, the elements X ∈ L2(Ω,Σ,P) are equivalent classes of
random variables.

This is a Hilbert space endowed with the following scalar product

E[XY ] = 〈X,Y 〉P =

∫
Ω

X(ω)Y (ω)dP(ω)

Therefore the norm is

‖X‖2L2(Ω,Σ,P) = E[X2] =

∫
Ω

(
X(ω)

)2
dP(ω)

17



18 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

To shorten the notation ‖X‖2P := ‖X‖2L2(Ω,Σ,P); the convergence in this norm is always referred
as mean square convergence or strong convergence.

Among elements in L2(Ω,Σ,P) there is the class of basic random variables, which is used to
decompose, as entries of functionals, the quantity of interest Y . Not all functions ξ : Ω → D
are admissible, at least they have to accomplish two properties

• ξ has �nite raw moments of all orders.

• The distribution function Fξ(x) := P (ξ ≤ x) of the basic random variables is continuous.

In particular only uniform U(−1, 1) or normal N (0, 1/2) are used as basic random variables.

The elements in L2(Ω,Σ,P) can be gathered in two groups: the basic random variable that
rules the decomposition and generic elements Y that one wish to decompose.

This coexistence of these two random variables Y and ξ yields to some subtleties on de�ning
the correct measurable Hilbert space on which the decomposition holds. It is only a matter of
matching σ-algebras.

Let us denote by σ(ξ) the σ-algebra generated by the basic random variable ξ. Of course
σ(ξ) ⊂ Σ. In order to express the random variable Y in terms of ξ, via a polynomial decompo-
sition, it has at least to be measurable with respect to σ-algebra σ(ξ).

A su�cient and necessary condition is given by Doob-Dynkin Lemma (as shown in Kallen-
berg [9], Lemma 1.13). It ensures that Y is σ(ξ)-measurable, by detecting a Borel measurable
function g : R→ R, such that Y = g(ξ). As consequence let us restrict the discussion to compute
the decomposition in L2(Ω, σ(ξ),P).

The basic random variable ξ induces, via its cumulative density function, a measure dFξ on
(D,B(D)), endowed with Borel σ-algebra on D.

Since the measure on R is absolutely continuous, there are two possible situations:

• if ξ is a Uniform U(−1, 1), then D = [−1, 1], while dFξ = w(x)dx where w(x) = 1/2.

• if ξ is a Normal N (0, 1/2), then D = R, while dFξ = w(x)dx where w(x) = 1√
π
e−x

2

.

In the previous section the classes of Legendre and Hermite polynomials were studied. These
families {Ψn(x)}n∈N are orthogonal with respect to the weight function w(x) de�ned above, now
understood as probability density function of ξ.

Moreover the family {Ψn(x)}n∈N can be interpreted as orthogonal with respect to measure
dFξ, where the Hilbert space is L

2(D,B(D), dFξ) in this new framework.

By the very de�nition of random variable ξ, the sequence {Ψn(ξ)}n∈N, is an orthogonal
system of functional polynomials in Hilbert space L2(Ω, σ(ξ),P), which inherits all properties of
{Ψn(x)}n∈N in L2(D,B(D), dFξ).

In particular Ψ0 is considered as a degenerate random variable, also referred as almost surely
constant random variable

P (Y = 1) = 1

or equivalently Ψ0 is P-almost equal to one.

De�nition 2.2 Given a basic random variable ξ, the associated orthogonal system {Ψn(ξ)}n∈N
is called generalized polynomial chaos (gPC) basis for the space L2(Ω, σ(ξ),P). Moreover if
Y ∈ L2(Ω, σ(ξ),P) its polynomial chaos expansion (PCE) is

Y = g(ξ) =

∞∑
i=0

ciΨi(ξ) (2.1)

and for all i ∈ N

ci =
E[YΨi]

E[Ψ2
i ]

=
1

E[Ψ2
i ]

∫
Ω

g
(
ξ(ω)

)
Ψi

(
ξ(ω)

)
dP(ω) (2.2)



2.1. ONE DIMENSIONAL POLYNOMIAL CHAOS EXPANSION 19

By means of the scalar product in L2(Ω, σ(ξ),P), the coe�cients can be de�ned equivalently as

ci =
〈Y,Ψi〉P
‖Ψi‖2P

for all i ∈ N.

Theorem 2.1 Let ξ be a basic random variable with associated gPC basis {Ψn(ξ)}n∈N. If
Y ∈ L2(Ω, σ(ξ),P), then the truncated series of PCE (2.1)

Y (N)(ξ) =

N∑
i=0

ciΨi(ξ)

where the coe�cients are de�ned as in equation (2.2), is a sequence of random variable {Y (N)}N∈N
that converges in mean square sense to Y as N → +∞.

Proof. Since Y ∈ L2(Ω, σ(ξ),P), there exists a Borel measurable function g, such that
Y = g(ξ). Let us consider a �xed degree N∥∥∥g(ξ)− Y (N)

∥∥∥2

P
=

∫
Ω

(
g
(
ξ(ω)

)
− Y (N)

(
ξ(ω)

))2

dP(ω) =

∫
D

(
g(x)− Y (N)(x)

)2

dFξ(x)

the right-hand side is meant as Lebesgue-Stietjes integral, therefore∥∥∥g(ξ)− Y (N)
∥∥∥2

P
=
∥∥∥g(x)− Y (N)(x)

∥∥∥2

L2(D,B(D),dFξ)

The set of orthogonal polynomials {Ψn(x)}n∈N is a maximal system in L2(D,B(D), dFξ), there-
fore for every real ε > 0 there exists a N such that∥∥∥g(x)− Y (N)(x)

∥∥∥2

L2(D,B(D),dFξ)
< ε

Hence {Y (N)(ξ)}N∈N converges in mean square sense to g(ξ) = Y .

�

Doob-Dynking lemma restricts to L2(Ω, σ(ξ),P) the class of random variables that can be
decomposed into the gPC basis. Let us give an example where the PCE does not make sense
even if the decomposed random variable has �nite second raw moment.

Example. Let ξ be a N (0, 1/2) and let Y be an arbitrary and independent (with respect
to ξ) random variable with �nite second order. The coe�cients of its decomposition into gPC
basis are: for i = 0

c0 = E[Ψ0Y ] = E[Y ]

while for each i ∈ N and i > 0, by independence property

ci =
1

E [Ψ2
i ]
E[YΨi] =

1

E [Ψ2
i ]
E[Y ] · E[Ψi] = 0

since E[Ψi] = 0 for all i > 0, see Section 2.2, hence the decomposition in gPC basis is

Y (N) = c0

while the second order random variable is not almost constant. Moreover the approximation
error in L2(Ω,Σ,P) is the variance of Y , indeed∥∥∥Y − Y (N)

∥∥∥2

P
=

∫
Ω

(Y − c0)2dP(ω) =

∫
Ω

Y 2(ω)dP(ω)− c20 = Var[Y ]

therefore no convergence occurs.



20 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

2.2 Properties of gPC basis and PCE

By means of induced measure dFξ on (D,B(D)) lots of properties of the family of Legendre and
Hermite polynomials in L2(D,w(x)dx) transfer to gPC basis in abstract space L2(Ω, σ(ξ),P).

Property 1

E
[
Ψi] =

{
1 i = 0

0 i > 0

Indeed, when i = 0

E
[
Ψ0] =

∫
Ω

Ψ0dP(ω) =

∫
Ω

dP(ω) = 1

while for i > 0, by orthogonality with respect to Ψ0 polynomial

E
[
Ψi] = E[Ψ0Ψi] = 0

Property 2

For each i ∈ N, let us consider

γi =
1

‖Ψi‖P
then {γiΨi(ξ)}i∈ N is an orthonormal and maximal system in L2(Ω, σ(ξ),P), thus Parceval
identity applies, hence ∑

i∈N
d2
i = ‖g(ξ)‖2P

where di is the i-th Fourier coe�cient, namely

di = 〈g(ξ), γiΨi〉

Notice that

di = 〈g(ξ), γiΨi〉 =
〈g(ξ),Ψi〉
‖Ψi‖2P

‖Ψi‖P = ci‖Ψi‖P

where ci is i-th coe�cient of the PCE decomposition, see (2.2). Then

‖g(ξ)‖2P =
∑
i∈N

d2
i =

∑
i∈N

c2i ‖Ψi‖2P

This gives a precise formula to compute the second raw moment of Y = g(ξ). Moreover
the estimation of the mean square error is achieved, indeed

ε(N) =
∥∥∥Y (N) − Y

∥∥∥
P

= ‖Y ‖P −
∥∥∥Y (N)

∥∥∥
P

this follows from basic properties of orthogonal projection in Hilbert space setting (see [1]).
Then exploiting both Parceval identity and relation between di and ci coe�cients

ε(N) =

+∞∑
i=N+1

c2i ‖Ψi‖2P

From now on ε(N) is the mean square error of the truncated expansion of degree N .

Property 3 The polynomial chaos expansion allows to get statistics of the random variable
Y ∈ L2(Ω, σ(ξ),P) by means of coe�cients of the decomposition, indeed

E[Y ] = E[g(ξ)] = E[g(ξ)Ψ0] =

∫
Ω

g
(
ξ(ω)

)
Ψ0

(
ξ(ω)

)
dP(ω) = c0



2.2. PROPERTIES OF GPC BASIS AND PCE 21

While the variance can be computed as Var[Y ] = E[Y 2] −
(
E[Y ]

)2
. The �rst summand of

the right-hand side is understood as the square norm in L2(Ω, σ(ξ),P) of Y . Thus by the
previous property

E[Y 2] = E[g(ξ)2] =

+∞∑
i=0

c2i ‖Ψi‖2P

Hence by plugging this result into Var[Y ] formula

Var[Y ] = Var[g(ξ)] =

(
+∞∑
i=0

c2i ‖Ψi‖2P

)
− c20 =

+∞∑
i=1

c2i ‖Ψi‖2P

2.2.1 Example: decomposition of a Lognomal random variable

Let X be a N (µ, σ2), then the Lognormal distribution is de�ned as Y = eX . Let us compute its
gPC expansion of degree N , using the basic random variable ξ ∼ N (0, 1/2), where w(x) is its
probability density function.
By plugging X = µ+ aξ , where a =

√
2σ, into the de�nition of Y

Y = eµeaξ =: g(ξ)

It is clear that this example �ts into requirements of De�nition 2.2. Hence its gPC expansion
converges in mean square sense. Moreover let {Hi}i∈N be the family of physicists' Hermite
polynomials.

Let i ∈ N be �xed

ci =
1

‖Hi‖2P

∫
R
eµeaxHi(x)

1√
π
e−x

2

dx

using trivial transformation the integrand becomes

ci =
eµea

2/4

2ii!

∫
R
Hi(x)

1√
π
e−(x− a2 )

2

dx

then by setting y = x− a
2

ci =
eµea

2/4

2ii!

∫
R
Hi

(
y +

a

2

) 1√
π
e−y

2

dy

which suggests to use the formula for translated Hermite polynomials, that is
Hi(y + t) =

∑i
k=0

(
i
k

)
Hk(y)(2t)i−k. Hence by substituting it in the previous integral and using

its linearity

ci =
eµea

2/4

2ii!

i∑
k=0

(
i

k

)
ai−k

∫
R
Hk(y)

1√
π
e−y

2

dy

By orthogonality of Hi polynomials the only integral that is not trivial is for k = 0, whose value
is one. Thus

ci = eµea
2/4 a

i

2ii!

Hence the truncated decomposition is

Y (N)(ξ) = eµea
2/4

N∑
i=0

ai

2ii!
Hi(ξ)



22 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

2.2.2 Weak convergence

As required in De�nition 2.2 the decomposition of a second order random variable Y , in terms of
polynomials in basic random variable ξ, holds whenever there exists a Borel measurable function
g, such that Y = g(ξ).

Unfortunately in practical cases the detection of such g either it is not trivial or it is not
possible. On the other hand Y is usually known by means of its distribution, this information
is enough to de�ne a kind of polynomial chaos expansion with weaker convergence property to Y .

The space, in which the decomposition is de�ned, is not changed: L2(Ω, σ(ξ),P) as well as
the family of orthogonal polynomials in ξ variable {Ψn(ξ)}n∈N. The new issue concerns the
de�nition of a random variable Y = T (ξ), by means of

T = F−1
Y

(
Fξ(ξ)

)
(2.3)

where FY , Fξ are respectively the cumulative density functions of Y and ξ. As stated in [15] Y
and Y have the same distribution.

If the transformation T de�ned in (2.3)

T : (R,B(R))→ (R,B(R))

is Borel measurable, Y is σ(ξ)-measurable by Doob-Dynkin Lemma. This is always the case
since FY is always continuous function as well as ξ is a continuous random variable. Moreover
by Baldi [10] having the same distribution implies equality of moment generating function and
thus Y and Y have the same second raw moments, ensuring that Y ∈ L2(Ω, σ(ξ),P).

Hence the procedure in De�nition 2.2 and Theorem 2.1 holds for Y : the polynomial chaos
expansion can be detected through the gPC basis, ensuring strong convergence of the truncated
series to Y .

In Appendix A it is shown that having the same cumulative density function does not imply
to be the same measurable function. Therefore in general settings the function Y and Y are not
the same element in L2(Ω, σ(ξ),P). This justi�es to handle Y and Y as di�erent quantities.

De�nition 2.3 Let Y ∈ L2(Ω,Σ,P) be a random variable with distribution FY , let ξ be a basic
random variable with gPC basis {Ψn}n∈N. If Y = T (ξ), where T is as in (2.3), then

Y = T (ξ) =

+∞∑
i=0

ciΨi(ξ) (2.4)

is called weak approximation of Y . The coe�cients are

ci =
1

E [Ψ2
i ]
E
[
YΨi

]
for all indexes i ∈ N.

Since Y ∈ L2(Ω, σ(ξ),P) the series in (2.4) is strongly convergent. Moreover it preserves a
convergence property with respect to Y .

Theorem 2.2 Let Y ∈ L2(Ω,Σ,P) be a random variable with cumulative density function FY .
Let ξ be a basic random variable with associated gPC {Ψn(ξ)}n∈N. Then the partial sums of the
series (2.4)

Y (N) =

N∑
i=0

ciΨi(ξ)

is a sequence of random variables, that converges in probability to Y .



2.3. MULTIDIMENSIONAL GPC BASIS AND PCE 23

Proof. By assumption Y admits a PCE that converges to it in mean square sense, therefore
the truncated expansion converges in probability: for each real ε > 0

P
(∣∣∣Y − Y (N)

∣∣∣ > ε
)
→ 0 N → +∞

Let us consider two sets

A =
{
ω ∈ Ω :

∣∣∣Y (ω)− Y (N)(ω)
∣∣∣ > ε

}
B =

{
ω ∈ Ω :

∣∣∣Y (ω)− Y (N)(ω)
∣∣∣ > ε

}
they belong to this σ-algebra Σ by the very de�nition of random variable. Their images through
functions Y and Y are the same set, namely (ε,+∞) ∩ D. Moreover being equally distributed
implies

1− P
(
Y
−1

(A)
)

= 1− FY (ε) = 1− FY (ε) = 1− P
(
Y −1(B)

)
therefore

P
(∣∣∣Y − Y (N)

∣∣∣ > ε
)
→ 0 N → +∞

�

2.3 Multidimensional gPC basis and PCE

Multivariate polynomial chaos theory is described using the univariate case. Actually there are
two theories for multivariate PCE: regarding to �nitely many basic random variables and the
in�nitely many. The theoretical approach is very di�erent, but, from a computational point of
view, it is important to describe the �rst one, since inputs of the processes considered are always
�nitely many.

Let us consider a �nite number of independent random variables ξ1, ξ2, . . . , ξM de�ned on
(Ω,Σ,P). They can be collected into a random vector ξ = ξ(ω) ∈ RM .

Denoting by {
Ψ

(m)
i (ξm)

}
i∈N

m = 1, 2, . . . ,M

the sequence of orthogonal polynomials with respect to the m-th distribution, that belongs to
L2(Dm, σ(ξm),P). The set of multivariate (tensor product) polynomials is given by

Ψi(ξ) =

M∏
m=1

Ψ
(m)
im

(ξm) i = (i1, . . . , iM ) ∈ NM

it constitutes a system of random variables in the space L2(Ω, σ(ξ),P). The random vector ξ
induces a measure dFξ on the image space (D,B(D)), were D ⊂ RM andD = D1×D2×· · ·×DM

dFξ = dFξ1 × · · · × dFξM .

Thus from properties of tensor products of Hilbert spaces (see [11] section II.4) the Hilbert
basis of L2(D,B(D), dFξ) is the tensor product of each basis of L2(Dm,B(Dm), dFξm), for
m = 1, . . . ,M . Therefore its elements are

Ψi(x) =

M∏
m=1

Ψ
(m)
im

(xm) i = (i1, . . . , iM ) ∈ NM

for x ∈ RM . By the very de�nition of random vector ξ, the sequence {Ψi(ξ)}i∈NM is an orthogonal
system of functional polynomials in the Hilbert space L2(Ω, σ(ξ),P), which inherits properties
of {Ψi(x)}i∈NM in L2(D,B(D), dFξ).



24 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

This implies that actually the family of polynomials

{Ψi(ξ)}i∈RM

is a maximal system in L2(Ω, σ(ξ),P).
In order to decomposed Y into the vector of independent basic random variables

ξ = (ξ1, . . . , ξM ), Y has to be σ(ξ)-measurable. This is ensured by the �multidimensional�
Doob-Dynkin lemma, namely if there exists a Borel measurable function g such that Y = g(ξ).

De�nition 2.4 Let ξ = (ξ1, . . . , ξM ) be a �nite vector of M ∈ N independent random variables

and let
{

Ψ
(m)
i (ξm)

}
i∈N, m = 1, . . . ,M be the associated orthogonal sequence of polynomials. The

system of random variables

Ψi(ξ) =

M∏
m=1

Ψ
(m)
im

(ξ) i = (i1, . . . , iM ) ∈ NM

is an orthogonal basis of the space L2(Ω, σ(ξ),P) called generalized polynomial chaos (gPC) basis.
Moreover the multidimensional polynomial chaos expansion (PCE) is

Y = g(ξ) =
∑
i∈NM

ciΨi(ξ) (2.5)

where

ci =
1

‖Ψi‖2P
〈g(ξ),Ψi(ξ)〉P

for all multi-indexes i ∈ NM .

Theorem 2.3 Let ξ = (ξ1, . . . , ξM ) be a vector of M ∈ N independent random variables. The
series de�ned in equation (2.5) converges in mean square sense in L2(Ω, σ(ξ),P).

Proof.

The random vector ξ induces a measure dFξ on image space (D,B(D)). Moreover let us set
Z(ξ) =

∑
i∈NM ciΨi(ξ) as the PCE of Y = g(ξ). Thus the mean square error is

‖g(ξ)− Z(ξ)‖2P =

∫
Ω

(
g(ξ(ω))− Z(ξ(ω))

)2
dP(ω) =

∫
D

(g(x)− Z(x))
2
dFξ(x)

Since the family of polynomials {Ψi(x)} is a Hilbert basis for L2(D,B(D), dFξ) ( see [11] section
II.4), the previous quantity is zero. Therefore the PCE converges in mean square sense to Y .

�

The multivariate decomposition is de�ned using the univariate one, simply by considering the
tensor products between the M -bases of orthogonal polynomials. Moreover truncation is not so
straightforward. It is clear that this di�culty in truncation is due to the nonexistence of trivial
order in multi-indexes representation of multivariate polynomials.

Before describing a possible solution let us detect the �nite dimensional subspace where the
truncated series lies.

Given a tuple (n1, . . . , nM ) ∈ NM , the univariate �nite bases are

Bm =
{

Ψ
(m)
i (ξm)

}
i=0,...,nm

m = 1, . . . ,M

each of them generates a linear subspace of L2(Ω, σ(ξm),P). Then let us consider B a �nite
dimensional subspace of L2(Ω, σ(ξ),P) generated by

M⊗
m=1

Bm



2.3. MULTIDIMENSIONAL GPC BASIS AND PCE 25

Then it is clear that dim B = (n1 + 1) · (n2 + 1) · · · (nM + 1).

A possibility is to de�ne the graded lexicographic order for multi-indexes where i > j if and
only if |i| > |j| and the �rst non zero entry in the di�erence i− j is positive.
It allows to sort the multi-indexes in an ascending order following a single index. Table (2.1)
shows a two dimensional example of such ordering. Therefore the truncation of (2.5) is

Y (N) =
∑
|i|≤N

ciΨi(ξ)

By construction it lies in the linear subspace of L2(Ω, σ(ξ),P) spanned by the multivariate
polynomials of total degree at most N . This space is called PMN , and its dimension is

dim PMN =

(
N +M

N

)
In implementation framework this is the most used ordering for multidimensional polynomials
since the truncated series is directly de�ned by means of total degree N .

|i| Multi-index i Single index k
0 (0 0) 1

1 (1 0) 2
(0 1) 3

2 (2 0) 4
(1 1) 5
(0 2) 6

3 (3 0) 7
(2 1) 8
(1 2) 9
(0 3) 10

Table 2.1: An example of graded lexicographic ordering for a two dimensional multi-index i

The main properties of PCE is convergence in mean square sense of (2.5). This is ensured by
theory of tensor products of Hilbert spaces. But actually the �nal aim is to get convergence for
increasing total degree N . It is enough to prove that for every �xed tuple (n1, . . . , nM ) ∈ NM
there exists a total index N , such that the linear space spanned by polynomials of total degree
at most N contains the one spanned by tensor product basis.

The discussion is made using a practical example of a 2-dimensional �nite basis ξ = (ξ1, ξ2),
characterized by a couple (n1, n2) = (2, 3). Therefore the associated univariate �nite bases are

B1 = {Ψ(1)
0 ,Ψ

(1)
1 ,Ψ

(1)
2 } B2 = {Ψ(2)

0 ,Ψ
(2)
1 ,Ψ

(2)
2 ,Ψ

(2)
3 }

The tensor product consists in all the possible products of these elements.

Ψ
(1)
0 Ψ

(2)
0 Ψ

(1)
0 Ψ

(2)
1 Ψ

(1)
0 Ψ

(2)
2 Ψ

(1)
0 Ψ

(2)
3

Ψ
(1)
1 Ψ

(2)
0 Ψ

(1)
1 Ψ

(2)
1 Ψ

(1)
1 Ψ

(2)
2 Ψ

(1)
1 Ψ

(2)
3

Ψ
(1)
2 Ψ

(2)
0 Ψ

(1)
2 Ψ

(2)
1 Ψ

(1)
2 Ψ

(2)
2 Ψ

(1)
2 Ψ

(2)
3

On the other hand the lexicographical order, allows to consider �nite basis via detecting all
multi-index |i| ≤ N , for a �xed N .



26 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

These approaches can be represented graphically on a plane, see Figure (2.1). The entries
of each couple (n1, n2) ∈ N2 are respectively the degree of the �rst and the second polynomial
involved. Therefore the x-axis represents the degree of polynomials in �rst variable, while y-axis
is the degree of polynomials in second variable.

1 2 3 4 5 6

1

2

3

4

5

6

0

tensor products

total degree at most 5

Figure 2.1: Degrees of 2D basis polynomials coming from either tensor product of polynomial
bases either considering the polynomials of total degree at most N

For instance the couple (2, 3) corresponds to Ψ
(1)
2 Ψ

(2)
3 .

The red circles represent the multivariate polynomials that follow a graded lexicographical
ordering, whose total degree is at most N . They can be detected as all the couples of natural
numbers that lies below the red line, which represent the bound |i| ≤ N .

While the tensor product elements are the one inside the rectangle whose sides are of length
2 and 3 respectively. If the total degree is

N = m1 + n2 = 2 + 3

all polynomials, coming from tensor product computations, have total degree less or equal to N .

In general setting it is enough to sum the components of the entries in the tuple. This is a
direct consequence of the de�nition of total degree of the polynomial.

With this choice of N , from Figure 2.1 it is clear that the linear space generated by the
tensor product basis is a subspace of span{Ψi}|i|≤N , thus the convergence in mean square sense
for (n1, n2)→ +∞ implies convergence as N → +∞ of

Y (N) =
∑
|i|≤N

ciΨi(ξ)

in L2(Ω, σ(ξ),P).



2.4. PCE OF RANDOM VECTORS 27

2.4 PCE of random vectors

Let Y = (Y1, . . . , YJ) be a random vector, whose components are random variables on (Ω,Σ,P),
thus for each j = 1, . . . , J

Yj : Ω→ R

For simplicity let us consider the univariate decomposition. The polynomial chaos expansion of
Y is the collection of the PCE of each component, thus for a �xed j ∈ {1, . . . , J}

Yj =

∞∑
i=0

c
(j)
i Ψi(ξ)

where

c
(j)
i =

E [Yj ,Ψi]

E [Ψ2
i ]

The strong convergence is achieved whenever Doob-Dynking lemma applies component wise,
if this is not the case weak convergence is accomplished by means of section (2.2.2).

The vectorial PCE can be recast as

Y =
∞∑
i=0

ciΨi(ξ)

where ci =
(
c
(1)
i , . . . , c

(J)
i

)
.

Whether ξ is a basic random vector, the multivariate decomposition is achieved by applying
the multivariate polynomial chaos expansion component by component.

2.5 A multi-element approach

The described PCE su�ers of low convergence rate if the random variable Y = g(ξ), both in
univariate and multivariate cases, has high curvature or is highly oscillating (see [19]). The
usual polynomial chaos decomposition can be referred in terms of global, since a unique random
variable is used to describe Y on the whole sampling space.

In order to overwhelm this low convergent rate, a multi-element polynomial chaos can be
developed. The basic idea is breaking the domain into sub-elements and de�ne local PCE that
may be more e�cient to reduce the error.

Multi-Element Generalized Polynomial Chaos (ME-gPC) bases were introduced by Wan and
Karniadakis in [17]. This approach provides a decomposition of the quantity of interest Y on
each element and it de�nes a new classes of orthogonal polynomials, in which the expansion
is computed. The orthogonality is detected with respect to a weight function speci�c for each
element.

The idea described in this section di�ers: the local decompositions are made in term of the
usual basic random variable, then the polynomial chaos expansions are combined in order to get
the global behavior of the random quantity of interest Y .

The discussion made below is restricted to univariate expansions, but it can be extended to
multivariate settings exploiting the same idea described in the previous section.

2.5.1 Decomposing the range of a scalar random variable

The decomposition of the sample space into elements is required as �rst step. Then for each
element a collection of local random variables, which are compatible with the global one Y , is
detected.



28 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

Let (Ω,Σ,P) be a probability space. Suppose to have a real-valued random variable Y de�ned
on it

Y : Ω −→ D ⊂ R

where D is a closed interval. It induces a measure dFY on (D,B(D)), where B(D) is the Borel
σ-algebra, for simplicity let us assume that the distribution FY is an absolute continuous function,
thus an integrable probability density function fY always exists.

Let A = {Ak}Nek=1 be a Ne-element partition of D. These elements are pairwise disjoint
intervals in R, thus

D =

Ne⋃
k=1

Ak

Then for every �xed index k = 1, 2, . . . , Ne let us de�ne the indicator random variable
IAk : Ω→ R as

IAk(ω) =

{
1 ξ(ω) ∈ Ak
0 otherwise

By construction it is a measurable function from Ω to R. Moreover I−1
Ak

(1)∩ I−1
Ah

(1) = ∅ if k 6= h
where h, k ∈ {1, 2 . . . , Ne}, by means of the partition A. Hence

Ω =

Ne⋃
i=1

I−1
Ah

(1)

This proves that actually the partition on the image space of Y re�ects to the sample space Ω,
thus no distinction will be done, since one implies the other.

The main goal is de�ning, for each element Ak, a random variable Yk such that it is consistent
with Y restricted to Ak. Technically the requirements are about a random variable de�ned of(
I−1
Ak

(1),Σ ∩ I−1
Ak
,P(·|IAk = 1)

)
, for simplicity Pk := P(·|IAk = 1), where

Yk : I−1
Ak

(1) −→ Ak

that induces a measure on the image space (Ak,B ∩Ak, dFYk), such that

Pk (Yk ∈ B ∩Ak) =
P (Y ∈ B ∩Ak)

P (Y ∈ Ak)
(2.6)

where the sets {Y ∈ Ak} represent {ω ∈ Ω : Y (ω) ∈ Ak} for all k = 1, . . . , Ne.
In order to de�ne Yk such that (2.6) holds, it is needed that P(Y ∈ Ak) > 0 for all the

elements Ak. Indeed if there exists an index k, such that P(Y ∈ Ak) = 0, the set Ak can be put
together with either Ak−1 or Ak+1. For simplicity let us suppose to select the �rst. Since Ak
and Ak−1 are disjoint

P
(
Y ∈ (Ak−1 ∪Ak)

)
= P(Y ∈ Ak−1) + P(Y ∈ Ak) = P(Y ∈ Ak−1)

Therefore without loss of generality the partition A is made of non-zero length intervals.

By multiplying both sides of equation (2.6) by P (Y ∈ A) and by summing it up with respect
to all elements

Ne∑
k=1

P (Y ∈ B ∩Ak) =

Ne∑
k=1

Pk (Yk ∈ B ∩Ak) · P(Y ∈ Ak)

since the sets B ∩Ak for k = 1, . . . , Ne are a partition of B

P(Y ∈ B) =

Ne∑
k=1

Pk (Yk ∈ B ∩Ak) · P(Y ∈ Ak) (2.7)



2.5. A MULTI-ELEMENT APPROACH 29

For a �xed index k ∈ {1, 2, . . . , Ne} a possible choice of Yk on Ak is a random variable
subjected to the following probability density function

fYk =


fY (x)

pk
x ∈ Ak

0 otherwise
(2.8)

where pk =
∫
Ak
fY (x)dx. The probability density function fYk can be understood as the nor-

malization to one of fY |Ak .

Proposition 2.1 Let Y : Ω → D be a random variable with density function fY , and let
A = {Ak}Nek=1 be the partition de�ned on D. If for each k = 1, 2, . . . , Ne, Yk is a random
variable subjected to fYk(2.8), then

Pk (Yk ∈ B ∩Ak) =
P (Y ∈ B ∩Ak)

P (Y ∈ Ak)

Proof. Let us consider a �xed index k ∈ {1, 2, . . . , Ne}. From direct computations, exploit-
ing de�nition of fYk

Pk (Yk ∈ B ∩Ak) =

∫
B∩Ak

fYk(x)dx =

=

∫
B∩Ak

fY (x)

pk
dx =

=
1

pk

∫
B∈Ak

fY (x)dx =

=
P (Y ∈ B ∩Ak)

P (Y ∈ Ak)

�

Let us compute the statistics of Y by means of Yk moments.

Proposition 2.2 In the hypothesis of the previous proposition, if g : R→ R is a Borel measur-
able and integrable function, then

E [g(Y )] =

Ne∑
k=1

E [g(Yk)] · P (Y ∈ Ak)

Proof. Exploiting the de�nition of the expectation and the property of the partition A

E [g(Y )] =

∫
D

g(x)fY (x)dx =

Ne∑
k=1

∫
Ak

g(x)fY (x)dx

then upon de�ning pk =
∫
Ak
fY (y)dy for each k = 1, 2, . . . , Ne

Ne∑
k=1

∫
Ak

g(x)fY (x)dx =

Ne∑
k=1

pk
pk

∫
D

g(x)fY (x)dx

Keeping in mind that pk = P (Y ∈ Ak) and fYk then

E [g(Y )] =

Ne∑
k=1

P (Y ∈ Ak)

∫
Ak

g(x)fYk(x)dx =

Ne∑
k=1

E [g(Yk)] · P (Y ∈ Ak)

�



30 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

The previous theorem detects directly the mean of Y , while in order to compute the variance
of Y using Var[Yk], some manipulations are needed. Let us consider as Borel measurable function
g(y) = (y − µ)2, where µ = E [Y ] and let us call µk = E [Yk] for each k = 1, 2, . . . , Ne.

E
[
(Y − µ)2

]
=

Ne∑
k=1

E
[
(Yk − µ)2

]
· P (Y ∈ Ak) =

=

Ne∑
k=1

E
[
(Yk − µk + µk − µ)2

]
· P (Y ∈ Ak) =

=

Ne∑
k=1

[
E
[
(Yk − µk)2

]
+ (µk − µ)2 − 2(µk − µ)E [Yk − µk]

]
· P (Y ∈ Ak) =

=

Ne∑
k=1

[
E
[
(Yk − µk)2

]
+ (µk − µ)2

]
· P (Y ∈ Ak)

2.5.2 A Multi-Element Polynomial Chaos

In the previous section the random variables Yk were de�ned in order to be consistent with Y
on each element Ak for k = 1, . . . , Ne. Next step provides to compute the PCE of each Yk.

Wan and Karniadakis [17] proposed a multi-element polynomial chaos expansion, where for
each element considered, a family of orthogonal polynomials is developed. The orthogonality
condition is achieved with respect to the probability density function fYk , thus it is di�erent on
each element.

This approach de�nes a gPC basis strictly related to the local behavior of the random variable
Y , by the very de�nition of fYk . A drawback is about the de�nition of new orthogonal families,
one for each element.

In this section the approach proposed is slightly di�erent. Despite developing new orthogonal
families of polynomials, usual orthogonal classes are used for each element Ak. For simplicity
the decomposition of each Yk is made with the same basic random variables ξ.

Let us restrict the discussion to a generic element Ak of the partition A, where the basic
random variable ξ is already �xed (Normal or Uniform) as well as the associated gPC basis
{Ψk,i(ξ)}i∈N. Therefore Yk, de�ned by (2.8), can be decomposed as

Yk =

∞∑
i=0

ck,iΨk,i(ξ) (2.9)

where the coe�cients are de�ned as in (2.2). Moreover let us consider the truncated series of
degree N

Y
(N)
k =

N∑
i=0

ck,iΨk,i(ξ) (2.10)

By considering events {Y ≤ x} for some x ∈ R, the equation (2.7) can be expressed in terms
of cumulative density functions FYk

FY (x) =

Ne∑
k=1

FYk(x) · P (Y ∈ Ak)

The convergence in mean square sense of Y
(N)
k to Y implies convergence in distribution of the

same quantities, therefore by exploiting linearity of the limit

Ne∑
k=1

F
(N)
Yk

(x) · P (Y ∈ Ak) −→
Ne∑
k=1

FYk(x) · P (Y ∈ Ak) = FY (x)



2.5. A MULTI-ELEMENT APPROACH 31

as N → +∞ for all continuity point x of FYk(x). Notice that F
(N)
Yk

represents the cumulative
density function of the truncated decomposition of degree N .

Let us prove that actually this approach de�nes a random variable that converges in proba-
bility to Y . First de�ne

η(ω) =

Ne∑
k=1

IAk(Y (ω))Yk(ω)

which is a Σ-measurable function by considering Yk extended to zero on Ω.

Since the elements of
{
I−1
Ak

(1)
}Ne
k=1

is a partition of Ω, {η ∈ B} = ∪Nek=1{Yk ∈ B ∩ Ak} for
each Borel set B ⊂ R. Then

P (η ∈ B) = P

(
Ne⋃
k=1

{Yk ∈ B ∩Ak}

)
=

Ne∑
k=1

P (Yk ∈ B ∩Ak)

By the very de�nition of the distribution of each Yk, P (Yk ∈ B ∩Ak) = P (Y ∈ B ∩Ak), since
the measure induced on image space is given by Y . Thus

P (η ∈ B) =

Ne∑
k=1

P (Y ∈ B ∩Ak) =

Ne∑
k=1

P (Y ∈ Ak)
P (Y ∈ B ∩Ak)

P (Y ∈ Ak)

by exploiting the de�nition of Pk (Yk ∈ B ∩Ak) in (2.6), and by equation (2.7)

P (η ∈ B) =

Ne∑
k=1

P (Y ∈ Ak) · Pk (Yk ∈ B ∩Ak) = P (Y ∈ B)

Therefore η and Y have the same distribution.

As second step let us prove that the sequence in N of random variables below

Ne∑
k=1

IAk(Y (ω))Y
(N)
k (ω) (2.11)

converges in probability to η. Thus let us consider the following event, for a �xed N∣∣∣∣∣
Ne∑
k=1

IAk(Y (ω))Y (N)(ω)−
Ne∑
k=1

IAk(Y (ω))Yk(ω)

∣∣∣∣∣ =

∣∣∣∣∣
Ne∑
k=1

IAk(ω)

(
Y

(N)
k − Yk

)∣∣∣∣∣ ≤
≤

Ne∑
k=1

IAk(ω)
∣∣∣Y (N)
k (ω)− Yk(ω)

∣∣∣ ≤
≤

Ne∑
k=1

∣∣∣Y (N)
k (ω)− Yk(ω)

∣∣∣
for each k ∈ {1, . . . , Ne} the random variable Yk and Y

(N)
k are de�ned on disjoint sets, therefore

the sum in last inequality becomes a union of sets. Moreover by considering a �xed real ε > 0

{∣∣∣∣∣
Ne∑
k=1

IAk(Y (ω))Y
(N)
k (ω)−

Ne∑
k=1

IAk(Y (ω))Yk(ω)

∣∣∣∣∣ > ε

}
⊆

{(
Ne⋃
k=1

∣∣∣Y (N)
k (ω)− Yk(ω)

∣∣∣) > ε

}

Again exploiting the de�nition of Yk random variables{(
Ne⋃
k=1

∣∣∣Y (N)
k (ω)− Yk(ω)

∣∣∣) > ε

}
=

Ne⋃
k=1

{∣∣∣Y (N)
k (ω)− Yk(ω)

∣∣∣ > ε
}



32 CHAPTER 2. POLYNOMIAL CHAOS EXPANSION

thus by monotonicity of the probability measure and keeping in mind that Y
(N)
k converges in

probability to Yk

P

(∣∣∣∣∣
Ne∑
k=1

IAk(Y (ω))Y
(N)
k (ω)−

Ne∑
k=1

IAk(Y (ω))Yk(ω)

∣∣∣∣∣ > ε

)
≤ P

(
Ne⋃
k=1

{∣∣∣Y (N)
k (ω)− Yk(ω)

∣∣∣ > ε
})

=

Ne∑
k=1

P
(∣∣∣Y (N)

k (ω)− Yk(ω)
∣∣∣ > ε

)
→ 0

That proves how
∑Ne
k=1 IAk(ω)Y

(N)
k (ω) converges in probability to η, as N → +∞. Then, since

η and Y are equally distributed,

Ne∑
k=1

IAk(ω)Y
(N)
k (ω)

P−→ Y (ω) N → +∞

Convergence in L2(Ω, σ(ξ),P) norm is not investigated since the global decomposition satis-
�es this requirement, and there is not other possibility in such Hilbert space.

In univariate settings lots of e�ort was made to distinguish the cases of weak convergence
and strong convergence of the polynomial chaos expansion. This allowed to classify the random
variables into two classes. In multi-element framework there is not any distinction among ele-
ments in L2(Ω, σ(ξ),P) , since the strongest convergence property is in probability.

As last remark notice that the connectivity property between two adjacent elements was never
discussed, namely

Y Nk (ξ) = Y
(N)
k+1 (ξ) ξ ∈ Ak ∩Ak+1

for all k = 1, . . . , Ne − 1, and where Ak and Ak+1 represent the closure of the two elements.
This continuity condition is not required since the Lebesgue measure of the interface between
two random elements is zero, indeed statistics, convergence features are de�ned as a Lebesgue
integration.



Chapter 3

Non-intrusive Spectral Projection

This chapter describes Non-Intrusive Spectral Projection (NISP) methods for approximation of
the output of a process in presence of random inputs, parametrized by a �nite number of random
variables ξ = (ξ1, . . . , ξm), de�ned on a probability space (Ω,Σ,P).

When a simulation of a real process occurs, uncertainties have to be taken into account. They
have several origins: model discrepancy with respect to real process, lack of precise knowledge of
physical parameters and inputs. NISP is a tool developed to describe how uncertainties propagate
into a model.

Let be more precise by de�ning a model M of a process of interest with a �nite number
of random inputs X = (X1, . . . , XJ). The aim is to get features of the output random vector
Y = (Y1, . . . , YH)

Y =M(X)

The models considered admit a unique solution for almost all realization of the random inputs.

3.1 Motivation: Uncertainty Quanti�cation

In many cases, the input data set may not be completely speci�ed, for instance due to incom-
plete knowledge of the real system or because of intrinsic variability. The associated uncertainties
may have di�erent origins, for example, it may not be possible to determine precisely the bound-
ary conditions of the system, or the forcing that it is subjected to. Furthermore, the physical
properties of the system may not be exactly known.

Thus, though model equations may be deterministic, it may not be possible to rely on a
single deterministic simulation because the input data are not precisely known, or they admit
intrinsic variabilities. Consequently, one must associate an uncertainty resulting from incomplete
knowledge of the input data with the simulation results.

Uncertainty Quanti�cation (UQ) was introduced to get such a behavior . It is a fundamental
step towards validation and certi�cation of numerical methods to be used for critical decisions.
Validation consists in comparing the simulations with respect to the real measurements, per-
formed on real system, in order to achieve good prediction of reality.

Uncertainties can be classi�ed as: epistemic or aleatory. The former is a potential de�ciency,
due to a lack of knowledge. It could be a consequence of assumptions introduced in the derivation
of the mathematical model, such as limited accuracy in the measurement of the physical constant
involved (it is also called reducible uncertainty or incertitude). Such kind of uncertainty source
can be reduced by rede�ning the model and increasing its accuracy.

The latter is the intrinsic physical variability of the system. It is not linked with lack of
knowledge and cannot be reduced (also referred as variability, stochastic uncertainty). The
mathematical model is the noise and the probabilistic framework gets its behavior.

33



34 CHAPTER 3. NON-INTRUSIVE SPECTRAL PROJECTION

Aleatory uncertainties motivate the introduction of UQ methods. The most famous one is
Monte-Carlo (MC), that relies on pseudo-random sampling of inputs parameter of a process. The
model is simulated on these realizations, and the results allow to compute statistics, probability
law, etc..., of the output. MC is a robust method, but it su�ers of low convergence rate, thus
many simulations are required for good approximation.

The spectral method studied in this chapter is based on radically di�erent approach: it
reconstructs the output Y in terms of a linear combination of functionals whose entries are
known random variables called germs or basic variables. The functional representation is based
on PCE of the output quantity, and the spectral method is characterized by the scheme used for
the detection of the coe�cients.

In this chapter only Non-Intrusive approach is presented. This technique computes the
coe�cients of output's PCE using a set of deterministic simulations of the process. This is the
most attractive feature of NISP: it does not recast of the model into a probabilistic framework
while at the same time it gets its random behavior.

3.2 Univariate NISP approach

Let us consider a model where both input and output are real-valued scalar random variables on
(Ω,Σ,P)

Y =M(X)

Non-Intrusive Spectral Projection provides a decomposition ofM(X) into a �nite gPC basis
{Ψ0 . . . ,ΨN}, hence it is the truncated PCE of Y . Moreover the basic random variable ξ inherits
all assumptions made in the previous chapter. The spectral projection of the output is

Y (N) =

N∑
i=0

ciΨi(ξ) (3.1)

In order to achieve (3.1) the process has to be described in terms of ξ. Thus the key component
is performing a transformation of variable from the original random input X to basic random
variable ξ and then applying the PCE.

This step relies on inverse transform method (see Xiu [15], Proposition 2.11)

X = T (ξ) T (ξ) = F−1
X (Fξ(ξ)) (3.2)

and the model becomes
M(ξ) = (M◦ T ) (ξ)

This ensures that actually the output depends on the basic random variable ξ.

Without loss of generality Y ∈ L2(Ω, σ(ξ),P), thus it is always a �nite second moment
random variable. Indeed in real applications output random variables with in�nite variance are
not interesting.

Since Y (N) is the projection of the output onto spanR {Ψ0, . . . ,ΨN}, for each index
i ∈ {0, . . . , N} the coe�cients in (3.1) are de�ned as

ci =

〈
M,Ψi

〉
P

‖Ψi‖2P
(3.3)

When gPC basis is selected the values ‖Ψi‖2P are tabled, thus only the computation of scalar
product is left:

〈
M,Ψi

〉
P

=

∫
D

M(x)Ψi(x)fξ(x)dx (3.4)

where D ⊂ R is the support of probability density function fξ of the basic random variable ξ.



3.3. UNIVARIATE QUADRATURE FORMULA 35

3.3 Univariate quadrature formula

In this section let us consider a �xed index i ∈ {0, . . . , N}. The integral in (3.4) is computed via
Gaussian quadrature formulas. This is the natural choice since the numerical scheme requires
computation of orthogonal polynomials in L2(D, fξ(x)dx), that are elements of the gPC basis.

To shorten the notation let us de�ne gi(x) = M(x)Ψi(x), then the right-hand side in (3.4) is
approximated by

Q
(1)
N (gi) =

N+1∑
k=1

gi

(
ξ(k)

)
w(k) (3.5)

where ξ(k) ∈ D and w(k) ∈ R, k = 1, . . . , N are nodes and weights of the chosen quadrature
formula. It could be either Gauss-Legendre or Gauss-Hermite by means of non-negative weight
function fξ.

In further sections the set
{
ξ(k)

}N+1

k=1
is called a sampling of ξ due to the very de�nition of

the integral (3.4): the quadratures nodes can be understood as particular realizations of basic
random variable ξ.

Combining the equations (3.5), (3.4) and (3.3) it is clear how NISP relies on a set of deter-
ministic model resolutions, corresponding to some speci�c realizations of ξ. Along this line, a
deterministic simulation code can be used as a black-box, which associates to each realization of
the parameters the corresponding model output.

3.4 Scilab's NISP toolbox

The NISP library is based on a set of three C++ classes that provide an object-oriented frame-
work for uncertainty analysis. The Scilab toolbox implements a pseudo-object oriented interface
to this library, so that the two approaches are consistent. The NISP library is characterized by
three tools.

• The �randvar� class allows to manage random variables, speci�ed by their distribution
laws and their parameters. Once a random variable is created, one can generate random
numbers from the associated law.

• The �setrandvar� class allows to manage a collection of random variables. This collection is
associated with a sampling method, such as MonteCarlo, Quadrature, etc... It is possible
to build the sampling and to get it back so that the experiments can be performed.

• The �polychaos� class handles a polynomial representation of the simulated model. Such
object must be associated with a set of experiments which have been performed. This set
may be read from a data �le. The object is linked with a collection of random variables.
Then the coe�cients of the polynomial can be computed by integration (quadrature for-
mulas). Moreover the mean, the variance and other feature of spectral decomposition can
be directly computed from the coe�cients.

Let us describe the general approach of a NISP codes. It is required that the user has a
numerical solver (the model of the process) which has the form Y = M(X), where X is a
realization of the uncertain input parameter and Y is the corresponding output of the simulation.
The method is based on the following steps:

• As �rst step ξ random variable is de�ned, such as N (0, 1) and U(0, 1). This choice allows to
de�ne the basis for the polynomial chaos, denoted by {Ψk}k∈N. Depending on the type of
random variable, the polynomials {Ψk}k∈N are based on Hermite or Legendre polynomials.
Laguerre polynomials are available but they are not used.

• Design Of Experiments (DOE) can be de�ned and the physical uncertain parameter X
is detected with random variable transformation rules. These values are inputs of the
numerical solver M. Several types of DOE are available: Monte-Carlo, Latin Hypercube
Sampling, etc...



36 CHAPTER 3. NON-INTRUSIVE SPECTRAL PROJECTION

• The simulation can be performed by evaluating the process on values de�ned in DOE,
and then one can project the variable Y into the polynomial basis, by computing, for
i = 0, 1, . . . , N , its coe�cients ci.

3.5 NISP toolbox features

Let us discuss in detail features of NISP library by means of an example. Let

Y = eX

be a process of interest, where X ∼ N (µ, σ2) for µ = 1 and σ = 1/2. The analytical solution is
a lognormal distribution Y .

The code can be split into �ve sections: de�nition of the model, problem data, design of
experiments, polynomial chaos de�nition and computation and post process analysis.

3.5.1 De�nition of the model

The numerical solver, that represents the modelM(X) is de�ned either as a Scialb function or
an external one. The former is used in this example:

function y = RV(x)

y = exp(x);

endfunction

the keywords function and endfunction are used to de�ne a function within Scilab, while
the inputs x is a realization of the input random variable.

3.5.2 Problem data de�nition

In this section features of the model are de�ned, such as parameters of random inputs, physical
data involved in the model de�nition, maximum degree of the decomposition and number of
output random variables.

For such example they are

N= 10;

nodeint = 10;

noutput = 1;

mu = 1;

sigma = 0.5;

where N is the degree of PCE truncation, mu and sigma represent the mean and the standard
deviation of the input. Moreover it is set the number of integration nodes used for quadrature
formula, it has to be at leas greater or equal to N.

3.5.3 Design of Experiment (DOE)

Design of experiment is one of the most important step in NISP approach. It consists in de�ni-
tion of gPC basis and computation of quadrature nodes for the detection of the coe�cients.

In NISP library Legendre polynomials on [−1, 1] and physicists' Hermite polynomials are
implemented. In order to select one of the two classes it is enough to set a normalized random
variable: either Uniform U(0, 1) or Normal N (0, 1).

In this setting the most natural decomposition is the second one, thus

xi = randvar_new('Normale');

srvxi = setrandvar_new();

setrandvar_addrandvar(srvxi,xi);



3.5. NISP TOOLBOX FEATURES 37

xi represents a normalized random variable that inhabits a container srvxi de�ned by
setrandvar_new(). Then the random inputs are set

x = randvar_new('Normale',mu,sigma);

srvx = setrandvar_new();

setrandvar_addrandvar(srvx,x);

Since X ∼ N (µ, σ2), the mean and the standard deviation of X are speci�ed as inputs of
randvar_new().

The key part of DOE is the detection of quadrature nodes on which the process will be
evaluated. This requires two steps

• The �rst one amounts to

setrandvar_buildsample(srvxi,"Quadrature",nodeint);

where "Quadrature" speci�es that a Gaussian quadrature rule is used, it could be Gauss-
Legendre or Gauss-Hermite by means of srvxi, while nodeint sets the number of quadra-
ture points. The result is the grid of quadrature nodes, i.e. the zeros of (nodeint + 1)-th
orthogonal polynomial.

• These points are transformed into a sampling of the input by

setrandvar_buildsample(srvx,srvxi);

Notice that xi is not the basic random variable, indeed it should be N
(
0, 1/2

)
rather than

N (0, 1). This is motivated by the algorithm used for computing quadratures nodes: it requires
probabilists' Hermite polynomials, whose zeros and associated weights are{

ξ
(k)
old

}N+1

k=1

{
w

(k)
old

}N+1

k=1

Then these values are transformed into the correct ones (for the weight function fξ(x) = 1√
π
e−x

2

in (3.4)) using a linear transformation

ξ(k) =
√

2 · ξ(k)
old w(k) =

w
(k)
old√
π

For Gauss-Legendre integration the quadrature nodes and weights are already set to be
compatible with Legendre polynomials on [−1, 1], thus no transformation occurs.

3.5.4 Polynomial Chaos de�nition and computation

Spectral projection of the output is de�ned by means of PCE:

pc = polychaos_new(srvxi,noutput);

np = setrandvar_getsize(srvxi);

polychaos_setsizetarget(pc,np);

The routine polychaos_new generates the object pc and it requires the basic random variable
(srvxi) and the number of outputs (noutput) as inputs. Moreover the routine
polychaos_setsizetarget reserves memory's space needed to save the evaluation of the process
at quadrature nodes: it is related to the size of the sampling de�ned in DOE. Then the process
is evaluated and the degree of the decomposition is set

inputdata = setrandvar_getsample(srvx);

outputdata = RV(inputdata);

polychaos_settarget(pc,outputdata);

polychaos_setdegree(pc,degre);



38 CHAPTER 3. NON-INTRUSIVE SPECTRAL PROJECTION

Al data needed for coe�cients' computation are de�ned, thus

polychaos_computeexp(pc,srvxi,'Integration');

The underlying C++ method collects all information de�ned, such as quadrature nodes,
evaluation of the process, and then it computes the gPC basis and PCE getting the coe�cients
via a numerical scheme compatible with the selected quadrature rule.

3.5.5 Post process analysis

Once PCE of the output is detected, NISP library provides lots of methods for post process
analysis, such as mean, variance and sampling of Y (N).

average = polychaos_getmean(pc);

var = polychaos_getvaraince(pc);

polychaos_buildsample(pc,"Lhs",NMC);

sout = polychaos_getsample(pc);

The routine polychaos_buildsample requires: the PCE expansion, the sampling technique
that will be used, and the number of realizations. Lhs stands for Latin Hypercube Sampling, it is
achieved by forcing the sampler to draw a realization within equiprobable bins in the parameter
range.

Other possibilities are MonteCarlo, that is the pseudo-random sampling and Quasi Monte
Carlo (QmcSobol), de�ned as a low discrepancy sequence of points generated by Sobol algo-
rithm, that maximizes the uniformity of the sample points. In Figure 3.1 are shown these three
possibilities by simulating two independent U(0, 1) for di�erent sampling's size N = 50, 150, 500.

Figure 3.1: Comparison between three available sampling techniques for N = 50, 150 and 500
from top to bottom

Once the sampling of the PCE is detected, we can compare it with the analytical probability
density function, by means of an histogram. (Figure 3.2).



3.5. NISP TOOLBOX FEATURES 39

Figure 3.2: Comparison between sampling of size 20000 of PCE and the analytical probability
density function (pdf) of lognormal distribution

Moreover the sampling of PCE allows to compute the mean square error of the approximation
Y (N), that is

ε(N) =

∫
Ω

E(N)
(
ξ(ω)

)
dP (ω) (3.6)

where

E(N)
(
ξ(ω)

)
=

(
N∑
i=0

ciΨ(ξ(ω))−M◦ T (ξ(ω))

)2

Two strategies are used: either ε(N) is computed with simulation (Monte Carlo) approach or via
trapezoidal integration rule.

The former is characterized by approximating the integral with

ε
(N)
MC =

1

NMC

NMC∑
j=1

E(N)
(
ξ(j)
)

where {ξ(j)}NMC
j=1 is a set of independent realizations of the basic random variable. This estimate

su�ers of low convergence rate, thus to achieve good approximation the size of the sampling has
to be large enough. In further examples it is always set as NMC = 20000.

The second approach computes the integral using inttrap Scilab's routine, which requires:
a set Ξ of values, compatible with the input of the process, and the evaluation of E(N)(·) on this
set.

Since Y (N) and M have the basic random variable as input, the set Ξ can be selected as
sampling of ξ. By construction the points in Ξ are not equally spaced, but the quadrature
formula still holds.

This procedure is implemented as



40 CHAPTER 3. NON-INTRUSIVE SPECTRAL PROJECTION

setrandvar_buildsample(srvxi,"Lhs",NT);

setrandvar_buildsample(srvx,srvxi);

sample1 = setrandvar_getsample(srvxi);

sample2 = (sqrt(2)/2)*sample1;

sample3 = setrandvar_getsample(srvx);

The set Ξ is sample2, while sample3 is required to evaluate the process (see (3.2)). Less
points are needed to achieve good convergence rate, thus NT = 200. Then let us evaluate the
process on sample3

val1 = RV(sample3);

while the evaluation of Y (N) on Ξ is a sampling sout2 of the PCE of size NT. This is always
true whenever sample1 and sout share the sampling technique (in this case Lhs).

Then the approximation of the mean square error ε
(N)
TP is computed by

error = inttrap(sample2,((sout2-val1).�2).*((1/sqrt(%pi))*exp(-sample2.�2)));

In order to compare such approaches let us run the previous code for a range of degree
N = 1, 2, . . . , 10. The results are shown in Table 3.1,

N ε
(N)
MC ε

(N)
TP

1 3.2078e-01 2.4476e-01
2 2.1372e-02 1.2786e-02
3 2.1468e-03 5.7541e-04
4 1.2954e-03 2.9575e-05
5 1.3047e-03 1.1631e-06
6 1.3015e-03 3.4578e-08
7 1.2979e-03 1.0795e-09
8 1.2975e-03 2.8550e-11
9 1.2975e-03 6.5099e-13
10 1.2975e-03 1.4689e-14

Table 3.1: Table of mean square error computed with Monte Carlo and trapezoidal rule

Moreover Table 3.1 proves convergence in mean square sense of Y (N) toM.

3.6 Multivariate NISP approach

Let us consider a model M characterized by a random vector X of inputs, whose components
are mutually independent, while the random output Y is a scalar quantity.

By multivariate PCE theory Y can be decomposed into the gPC basis, where the basic
random vector ξ = (ξ1, . . . , ξM ) is de�ned on (Ω,Σ,P), moreover its components are mutually
independent.

Also in this framework the input vector X has to be expressed in terms of ξ, by extending
inverse transform method to this setting, therefore

X = T(ξ)

hence the model becomes

M(ξ) =M◦T(ξ)

In Section 2.3 of Chapter 2 the spectral projection is de�ned using multi-index i notation,
sorted by graded lexicographical order and truncated by means of total degree N , thus

Y (N) =
∑
|i|≤N

ciΨi(ξ)



3.6. MULTIVARIATE NISP APPROACH 41

where for each multi-index |i| ≤ N

ci =

〈
M,Ψi

〉
P

‖Ψi‖2P

From now on let us consider a �xed multi-index i such that |i| ≤ N . As for univariate case, the
main e�ort is computing the scalar product, that is

〈
M,Ψi

〉
P

=

∫
D

M(x)Ψi(x)fξ(x)dx (3.7)

where x = (x1, . . . , xM ) ∈ RM and D ⊂ RM is the support of the joint probability density
function of the vector ξ, de�ned as

fξ(x) =

M∏
m=1

fξm(xm)

due to independence of the random variables ξ1, . . . , ξM .

In order to shorten the notation let us set gi(x) = M(x)Ψi(x), then the integral in (3.7) is
computed using multivariate Gaussian quadrature formula, de�ned by tensorization of
1D-formulas:

(
Q

(1)
1 ⊗ · · · ⊗Q

(1)
M

)
=

N1∑
i1=1

· · ·
NM∑
iM=1

gi

(
ξ

(i1)
1 , . . . , ξ

(iM )
M

)
w

(i1)
1 · w(iM )

M

where for each m ∈ {1, . . . ,M} the sets

{
ξ(im)
m

}Nm
im=1

{
w(im)
m

}Nm
im=1

represent the quadrature nodes and the weights of the selected quadrature formula along
xm-direction.

Clearly, the above formula requires
∏M
m=1Nm function evaluations. Therefore, when the

number of input random variables is small, full tensor product quadrature is a very e�ective
numerical tool. On the other hand the approximation based on tensor product grids su�ers
from the curse of dimensionality since the number of collocation points in a tensor grid grows
exponentially fast in the number of input random variables.

The modi�cation of previous Scialb's code for such setting concerns only the de�nition of
correct basic random variables and random inputs. Thus

xi1 = randvar_new('Normale');

xi2 = randvar_new('Normale');

srvxi = setrandvar_new();

setrandvar_addrandvar(srvxi,xi1);

setrandvar_addrandvar(srvxi,xi2);

x1 = randvar_new('Normale',mu1,sigma1);

x2 = randvar_new('Normale',mu2,sigma2);

srvx = setrandvar_new();

setrandvar_addrandvar(srvx,x1);

setrandvar_addrandvar(srvx,x2);

The other code lines does not change.



42 CHAPTER 3. NON-INTRUSIVE SPECTRAL PROJECTION

3.7 NISP approach for output random vector

A further possibility is the application of NISP to vectorial random output Y, for instance let us
consider NISP procedure applied to resolution of ODEs and PDEs, whose output is the solution
evaluated at spatial discretization points.

Te process considered is
Y =M(X)

where for simplicity X is considered scalar. Moreover let us assume that the input X and the
basic random variables ξ, satis�es the assumption of previous sections. Then NISP for output
random vector is the application of PCE to each component Yj of Y.

In particular when NISP is involved in description of the solution u of a generic ordinary
di�erential equation integrated on DM , each components Yj can be understood as the solution
restricted to the discretization point xj ∈ DM , thus the PCE computed describes the behavior
of u on this speci�c point xj . Moreover if the solution comes form a PDEs, thus it is time
dependent, a vectorial PCE can be computed for each time step, keeping the same interpretation
of each component Yj .

The changes on code lines are about the de�nition of the model and the declaration of the
number of outputs (noutput).

pc = polychaos_new(srvxi,noutput);

The extension to multivariate decomposition of vectorial NISP relies on computing multivari-
ate PCE for each component of the output vector Y.



Chapter 4

Application of NISP toolbox

This chapter deals with four applications of NISP toolbox for Scilab software. The �rst concerns
the decomposition of two bimodal random variables, where a particular attention is dedicated to
convergence properties of the PCE computed. The second describes the solution of a non-linear
ODE, when a physical parameter is characterized by uncertainty. In the third and forth examples
the behavior of two PDEs solutions in presence of uncertainty is analyzed.

The softwares used in this section are Scilab 5.5.1, FreeFem++ 3.3.2, and Pyclaw (based
on Clawpack 5.2.0). The �rst provides the environment to employ tools of NISP toolbox. The
second is a software that implements Finite Element Methods for solving PDEs and the last is a
python interface of Clawpack that solves linear and non-linear hyperbolic systems of conservation
laws.

4.1 Bimodal

Let us state the de�nition of Bimodal random variables

De�nition 4.1 Given a random variable Y , whose probability density function is f(x). Y is
called bimodal distribution if there exist only two distinct points x1 and x2 each of them is either
a local maximum or such that limx→xi f(x) = +∞.

4.1.1 Arcsine distribution

Let [a, b] be a real interval, then a random variable Y follows the arcsine distribution if its
cumulative density function is

F (x) =
1

π
arcsin

(
2
x− a
b− a

− 1

)
+

1

2
(4.1)

Moreover its probability density function (pdf) is

f(x) =
1

π
· 1√

(x− a)(b− x)
(4.2)

4.1.2 PCE decomposition of an arcsine distribution

In this section an arcsine random variable Y of support D = [−3, 1] is considered. By equations
(4.1) and (4.2) its probability and cumulative density functions are

F (x) =
1

π
arcsin

(
x+ 1

2

)
+

1

2

f(x) =
1

π

1√
(x+ 3)(1− x)

43



44 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.1: Probability and cumulative density functions for arcsine distribution of support
D = [−3, 1]

whose graphs are shown in Figure 4.1.

The arcsine random variable can be written as

Y = T
(
U(0, 1)

)
= F−1

(
U(0, 1)

)
(4.3)

by inverse transform method (see Xiu [15]), where

F−1
Y (x) = 2 sin

(
πx− π

2

)
− 1

Moreover it achieves the requirement to be decomposed using NISP toolbox, since Y is expressed
as an output of a process T . The Scilab routine, that implements T , is

function y =RV(x,a,b)

y = 0.5*(b-a)*(sin(%pi*(x-1/2))+1)+a;

endfunction

where the domain D = [a, b] has to be speci�ed as an input. Since the support of the
random variable is compact the gPC basis chosen is the class of Legendre polynomials on [−1, 1].
Moreover by the very de�nition of the process (4.3), the input random variable is U(0, 1). Then
the truncated expansion is

Y (N) =

N∑
i=0

ciΨi(ξ) (4.4)

where ξ ∼ U(−1, 1).

The main goal is proving the convergence in mean square sense of (4.4) to Y as N → +∞.
Thus for a set of degree N = {1, . . . , 9} the mean square error ε(N) (3.6) is computed. The
numerical integration is achieved using trapezoidal rule, these values are shown in Figure 4.2.

Such behavior of the mean square error is due to analytical expression of ε(N), that is

ε(N) =

+∞∑
i=N+1

c2i ‖Ψi‖2P



4.1. BIMODAL 45

Figure 4.2: Plot of ε(N) approximated by trapezoidal rule (inttrap routine)

this is motivated by property of orthogonal projection on a closed subset in the Hilbert space
considered (see [1] for details). Upon �xing an admissible degree N , the local error is∣∣∣ε(N+1) − ε(N)

∣∣∣ = c2N+1‖ΨN+1‖2P

Therefore in this case ε(N), estimated by trapezoidal rule, behaves as in Figure 4.2 since the
squares of the coe�cients with even indexes are null.

4.1.3 Mixture of random variables

The mixture of random variable is a general technique that de�nes a new random variable by
combining a �nite set probability density functions. Let j = 1, . . . , d be a �nite set of indexes
and let qj ∈ (0, 1) be a collection of real values such that

d∑
j=1

qj = 1

Moreover let us consider a �nite collection of random variables {Xj}dj=1 de�ned on the same
probability space and with the same support D.

The mixture of {Xj}dj=1, weighted by {qj}dj=1, is a random variable Y such that

fY (x) =

d∑
j=1

qjfXj (x) (4.5)

is its probability density function. Furthermore fY ful�lls all properties of a probability density
function: it is positive for all x ∈ D and the integral on whole support is one, indeed∫

D

fY (x) dx =

∫
D

d∑
j=1

qjfXj (x)dx =

d∑
j=1

qj

∫
D

fXj (x)dx =

d∑
j=1

qj = 1

By Integrating (4.5) the cumulative density function of Y is achieved

FY (x) =

d∑
j=1

qjFXj (x) (4.6)



46 CHAPTER 4. APPLICATION OF NISP TOOLBOX

4.1.4 PCE for Mixture of two normal random variables

In this example Y is de�ned as a mixture of two normal random variables:

X1 ∼ N
(
−3

2
,

1

16

)
X2 ∼ N

(
1,

1

16

)
the weights are set as q1 = 1

10 and q2 = 9
10 . Moreover the analytical expression of its probability

density function is

fY (x) =
1

10

1√
2σ1

e
(x−µ1)2

2σ21 +
9

10

1√
2σ2

e
(x−µ2)2

2σ22

where µ1, σ1 and µ2, σ2 are the means and standard deviations of the two random variables
X1, X2. Such function is represented in Figure 4.3.

Figure 4.3: Mixture of two normal random variables

NISP approach requires the de�nition of the random variable Y as an output of a function,
this is accomplished by the inverse transform method, thus

Y = F−1
Y (U(0, 1)) (4.7)

The analytical detection of the inverse is not an easy task, thus in computational framework it
is achieved by linear interpolation

function y = RV(x,mu,sigma,xloc,ylox)

//

// INPUTS

//

// x = a realization of the input random variable U(0,1)

// mu = the vector of mean values mu(1) = E[X_1] and mu(2) = E[X_2]

// sigma = the standard deviations, sigma(1) = stdv(X_1) and sigma(2) =

stdv(X_2)

// xloc = the x-values for computing the inverse

// yloc = the evaluation at xloc of the cdf Y

//

// OUTPUT

//



4.1. BIMODAL 47

// y = a realization of random variable Y

y = interp1([min(xloc);yloc;max(xloc)],[0;xloc;1],x,'linear');

endfunction

Since two random variables are used to de�ne Y , it is enough to set q1 while q2 = 1 − q1.
Notice that the �rst and last entries of interpolation nodes (see in interp1 routine) are changed
in order to avoid in�nity values coming from distfun_normcdf function.

By (4.7) the input random variables is a U(0, 1), while the germ ξ is set as U(−1, 1). Thus
the truncated PCE of degree N is

Y (N) =

N∑
i=0

ciΨi(ξ) (4.8)

where {Ψi}Ni=0 are the �rst N Legendre polynomials on [−1, 1]. The polynomial chaos expansion
is computed for a set N = {5, 10, 15, . . . , 70} .

Then the mean square error of Y (N) is computed via Monte Carlo method, hence simulating
the integral (3.6). These values are displayed in Figure 4.4.

Figure 4.4: Semilogarithmic plot of ε(N) approximated by Monte Carlo method for a global PCE
of a mixture of two normal random variables

It turns out that Y (N) is a�ected by low convergence rate for N → +∞. Furthermore this is
con�rmed by Figure 4.5, where two samplings of size 20000, for the polynomials chaos expansions
of degree N = 30 and N = 70, are computed.

A possibility to overwhelm such behavior is increasing the degree of the expansion, but this
is proportional to computational costs for the PCE detection.

In order to get better approximation using lower degree expansions a multi-element decompo-
sition is used. The approach is based on theory developed in section 2.5.2 of the second chapter.
For simplicity only two elements (intervals) are considered A1 and A2, such that for every k = 1, 2
with �xed pk ∈ (0, 1)

pk =

∫
Ak

fY (x)dx

In this example p1 = 1
10 and p2 = 9

10 . Since p1 + p2 = 1, it is enough to set

p1 = p p2 = 1− p



48 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.5: Two samplings of PCE for degree N = 30 (left) and degree N = 70 (right) relative
to a mixture of two normally distributed random variables

When the partition of the support is detected, two random variables Y1 and Y2 are de�ned
by means of (2.8). Moreover their probability density functions are

fY1
(x) =

1

p
fY (x)1A1

(x) fY2
(x) =

1

1− p
fY (x)1A2

(x)

where 1Ak(x) is the indicator function on Ak sets.

Then two polynomial chaos expansions are computed, one for each interval of the partition

Y
(N)
1 =

N∑
i=0

c1,iΨ1,i(ξ) Y
(N)
2 =

N∑
i=0

c2,iΨ2,i(ξ)

notice that they are truncated at the same degree and the basic random variable ξ is U(−1, 1)
for both decompositions. Moreover the degree is set as N = 15.

In order to compare the analytical probability density function fY and this multi-element
decomposition, two samplings of the two truncated decompositions are combined by means of
(2.11). The comparison is based on two samplings of size 20000, whose realizations are set into
two distinct histograms that are eventually gathered together since they lie on disjoint intervals
(A1 and A2 respectively).

To make reasonable comparison the area under the histogram has to be one. For such
discussion the equations (2.6) and (2.7) has to be taken into account. They state that the areas

of the two histograms (one for Y
(N)
1 and the other for Y

(N)
2 ) have to be set to p and 1 − p

respectively.
Due to this the routine histogram_ME is implemented and the two samplings are put together

and compared with analytical probability density function in Figure 4.6.

4.2 Non-linear ODE

The one dimensional non-linear ordinary di�erential equation considered is(
1− 2u

2

)
ux − µuxx = 0 (4.9)



4.2. NON-LINEAR ODE 49

Figure 4.6: Multi-element PCE histogram with 50 bins for mixture of two normal random variable

where the viscosity µ is a strictly positive parameter and the function

f(u) =
1− 2u

2

is the the non-linear advection velocity. The equation (4.9) can be recast into conservative form

−µuxx −
(

(1− 2u)2

8

)
x

= 0 (4.10)

In this section the behavior of the solution u(x) of (4.9) is studied, when the viscosity is a
random variable space independent. Two di�erent situations are studied: µ is either normal or
lognormal distribution.

To avoid numerical instability of the solver, that occurs for small µ values, the viscosity is
set as

µ ∼ N
(

1

4
,

1

2500

)
where the negative values have null probability. While the lognormal distribution is

µ ∼ eX X = N
(

1

4
,

1

16

)
Their probability density functions are displayed in Figure 4.7.

4.2.1 Analytical solution

The analytical solution of (4.9) can be computed and it will be used to compare the results
achieved by PCE. By linearity of the derivation the equation (4.10) becomes[

−µux −
(1− 2u)2

8

]
x

= 0

thus

−µux −
(1− 2u)2

8
= A

where A is a real parameter, that does not depend on µ. Therefore

ux = − (1− 2u)2

8µ
− A

µ
(4.11)



50 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.7: Probability density functions for µ distributed as normal (blue) and lognormal (red)
random variables

Hence A identi�es three cases by means of its sign: A null, negative and positive.
When A is null the solution is

u(x) =
1

2
+

2µ

x+ c
(4.12)

If A is negative one achieves

u(x) =
1

2
+
√

2 |A| tanh

(√
2 |A|x+ c

2µ

)
(4.13)

Whether A is positive, the integration of (4.11) gives

u(x) =
1

2
−
√

2A tan

(√
2A

x+ c

2µ

)
(4.14)

Three free parameters A and c are set in order to achieve boundary conditions.

4.2.2 First order ODE

For further discussion it is useful to recast (4.9) in a system of �rst order ODEs, thus for u(x) = p
and ux(x) = q, we get 

ṗ = q

q̇ =
1− 2p

2µ
q

(4.15)

where the vector �eld is called V (p, q),
Moreover let us consider in this setting the equation (4.11), which becomes

q = − (1− 2p)2

8µ
− A

µ
(4.16)

Then let us de�ne the following function:

H(p, q) = − (1− 2p)2

8µ
− A

µ
− q

this is a �rst integral of the system in (4.15), indeed ∇H(p, q) is orthogonal with respect to the
vector �led V (p, q).



4.2. NON-LINEAR ODE 51

4.2.3 PCE of the output

Since µ is a random variable, de�ned on a suitable probability space (Ω,Σ,P), the solution is an
aleatory quantity too

u
(
x, µ(·)

)
: Ω→ R

where x is �xed value within the integration domain.

NISP technique requires the de�nition of the solver for computing the solution of the di�er-
ential equation. In order to avoid the blow up of the solution, the di�erential equation (4.10) is
solved as a boundary values problem (BVPs). The numerical solution is computed on an uniform
discretization of the domain D = [a, b], de�ned as

DM =
{
xj : xj = a+ h(j − 1) , 1 ≤ j ≤M

}
where h = (b − a)/(M − 1). In these computations M = 101. Thus for each xj a polynomial
chaos expansion of degree N is computed, hence for j = 1, . . . ,M

u
(N)
j = u(N)(xj , ξ) =

N∑
i=0

ci(xj)Ψi(ξ)

where uj represents the j-th component of the discretized solution u. Furthermore the de-
composition is made using the set of physicists' Hermite polynomials, thus the basic random
variable is set as ξ ∼ N (0, 1/2).

It is analyzed the behavior of the PCE for A null, A negative and A positive, since three
solutions of the ODE are available. Moreover for each case two polynomial chaos expansions are
computed one for every input distribution.

Suitable Dirichlet boundary conditions are set in order to ensure convergence of the numerical
solution to the selected analytical solution u(x).

The discretization of (4.10) is computed by the second order centered �nite di�erences
method, thus

B · F (u)− µAu = 0

where A is the sti�ness matrix, B represents the matrix for �rst derivatives, u is the vector of
discretized solution and F (u) is the second term in (4.10) point wise evaluated. Since it is a non-
linear system of equations the standard Newton's methods is implemented, where its tolerance
is set as tol = 10−8.

Then NISP method is applied to compute polynomial chaos expansion for an increasing set
of degrees:

N = {1, . . . , 10}

for each of them the mean and the variance of the PCE is computed. Moreover it is compared
with values achieved using analytical solution. Thus for each xj ∈ DM

ūj = E [u(xj , µ(·))] =

∫
R
u(xj , t)fµ(t)dt (4.17)

vj = Var
[
u(xj , µ(·)

)]
=

∫
R

(
u(xj , t)− ū

)2
fµ(t)dt (4.18)

where fµ is the cumulative density function of the random input. They are computed by means
of Scilab routine inttrap. Moreover they are the components of two vectors ū and v that will
be compared with the vectors ū(N) and v(N), that represents the mean and variance of each
polynomial chaos expansion computed.



52 CHAPTER 4. APPLICATION OF NISP TOOLBOX

The error of mean and variance of a truncated PCE of degree N is identi�ed respectively by

ε
(N)
Mean =

∥∥∥ū(N) − ū
∥∥∥
∞

ε
(N)
Var =

∥∥∥v(N) − v
∥∥∥
∞

Notice that for all j = 1, . . . ,M ∣∣∣E [u(N)
j

]
− ū
∣∣∣ = 0

Indeed for every �xed index j, the coe�cient c0(xj) in PCE is de�ned as

c0(xj) =

∫
R
u
(
xj , T (s)

)
fξ(s)ds =: E

[
u

(N)
j

]
The basic random variable has already transformed into the input one. This is made by means
of inverse transform method, thus T (s) = F−1

µ (Fξ(s)), where F
−1
µ and Fξ(s) are the cumulative

density functions of µ and ξ respectively.
Then

E
[
u

(N)
j

]
− ū =

∫
R
u(xj , t)fµ(t)dt−

∫
R
u(xj , T (s))fξ(s)ds (4.19)

Thus by setting
t = F−1

µ (Fξ(s))

the integral in (4.19) becomes∫
R

(
u(xj , t)fµ(t)− u(xj , t)fµ(t)

)
dt = 0 (4.20)

therefore the mean error is always null, and it is meaningless to compute it.

For each case considered let us select a subset of discretization points {xi}i∈J ⊂ DM , where
J ⊂ {1 . . . ,M} of size d = 6. For such points the Box and Whiskers plot is computed (see [20]),
that gathers together many informations of the output random variable, such as InterQuartile
Range, 25-th and 75-th quartiles, the mean and the median.

The Box and Whiskers plot requires a sampling of the quantity of interest, thus 5000 realiza-

tions of u
(N)
j for each j ∈ J are computed. In such computations the degree of the expansion is

always set as N = 10.
Furthermore for these {xi}i∈J their probability density functions are estimated by means of

Kernel Density Estimation methods ([19] and [21]).

4.2.4 A null

The di�erential equation is integrate on [−3, 8], with ua = 1 and ub set as the evaluation of the
analytical solution at b = 8. Moreover the couple (a, ua) allows to de�ne free parameter c by
means of (4.11).

In Table 4.1 the values of the variance error ε
(N)
Var are displayed for both random inputs and for

the corresponding set of degrees. Moreover ε
(N)
Var has such stationary behavior since the Newton's

method has a tolerance of tol = 10−8.

Figure 4.8 represents the behavior of the mean and the variance of polynomial chaos ex-
pansion, whose degree is N = 10. For both cases (normal and lognormal inputs) the solution
approaches the equilibrium (ueq = 1

2 ), see section 4.2.2. Thus for higher values of b, u(x) is close
to ueq. Thus the advection term in (4.9) approaches zero, which implies that

µuxx ≈ 0



4.2. NON-LINEAR ODE 53

Degree N Variance error
normal

Variance error
lognormal

1 1.1446e-07 1.4337e-06
2 1.2970e-06 1.7388e-07
3 1.3198e-06 1.8194e-07
4 1.3202e-06 1.8187e-07
5 1.3203e-06 1.8188e-07
6 1.3203e-06 1.8185e-07
7 1.3203e-06 1.8187e-07
8 1.3203e-06 1.8191e-07
9 1.3203e-06 1.8186e-07
10 1.3203e-06 1.8188e-07

Table 4.1: Values of variance errors for and A = 0

Figure 4.8: The mean (left) and variance (right) of PCE for A = 0 for each discretization points
and for both random inputs: normal (blue) and lognormal (red)

hence the uncertainty of the input µ becomes less relevant. This motivates the decreasing values

of variance in both situation. Moreover Var[u
(N)
1 ] = 0 since ua is a �xed values.

In Figure 4.9 the Box and Whisker plot and the estimate of the probability density function
are shown for a subset of discretization points . Moreover the mean of the solution is displayed
for each discretization points (magenta curve).



54 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.9: The mean (left) and the variance (right) of PCE expansion for A = 0

4.2.5 A negative

The domain of integration is set as [−3, 3] and the free parameters in the analytical solution (see
4.13) are A = − 1

8 and c = 0. Furthermore the boundary conditions ua and ub are set as the
evaluation of the analytical solution at edges of the domain.

Table 4.2 gathers together the in�nite norm of the variance errors ε
(N)
Var .

Degree N Variance error normal Variance error lognormal
1 5.8108e-06 6.3609e-06
2 6.5412e-07 1.3968e-07
3 5.7909e-07 8.7907e-08
4 5.7916e-07 9.2244e-08
5 5.7926e-07 9.2145e-08
6 5.7924e-07 9.2145e-08
7 5.7921e-07 9.2145e-08
8 5.7925e-07 9.2145e-08
9 5.7925e-07 9.2145e-08
10 5.7924e-07 9.2145e-08

Table 4.2: Values or variance errors for both random inputs and A < 0

The errors do not converge since the tolerance for Newton's method is set to 10−8.

In Figure 4.10 the mean and the variance of the PCE are shown. The PCE considered has
degree N = 10.

When the viscosity is distributed as a normal random variable, it yields to a solution that
is closed to equilibrium at edges of the domain. Thus by (4.15) ux = q ≈ 0 and hence the
di�erential equation becomes

µuxx ≈ 0

proving that the viscosity does not in�uence the solution.

For µ that follows the lognormal distribution, the values ua = u(a) and ub = u(b) are far
from the equilibrium, thus the variance has more in�uence, as Figure 4.10 displays.

Nevertheless in both cases the variance is null when the solution is evaluate at x = 0. Indeed
u(x) ≈ 1

2 , thus the ODE becomes µuxx ≈ 0 making the variance of the viscosity irrelevant.



4.2. NON-LINEAR ODE 55

Figure 4.10: The mean and variance of PCE expansion for A < 0 for normal random variable
(blue) and lognormal one (red)

In Figure 4.11 the Box and Whisker plot and estimate of the probability density function are
shown for a subset of discretization point. Moreover the mean of the solution is shown for each
discretization points (magenta curve).



56 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.11: Box and Whisker for normal (left) and lognormal (right) for A < 0

4.2.6 A positive

The analytical solution in such case is (4.14), where the free parameters are set as A = 1
8 and

c = 0. In order to avoid blow up of the solution the domain of integration [a, b] is designed as

a = − 1

10

π√
2A
− c+ k b =

1

10

π√
2A
− c− k

where the constant is k = 1
10 . The boundary condition ua and ub are the evaluation of the

analytical solution (4.14) at edges of the domain.

In Table 4.3 the error of the variance ε
(N)
Var are shown for both random inputs. As for the

Degree N Variance error
normal

Variance error
lognormal

1 6.4410e-05 8.5067e-07
2 5.3142e-06 2.0574e-08
3 1.2240e-06 1.3083e-08
4 8.7715e-07 1.3011e-08
5 8.4110e-07 1.3010e-08
6 8.3658e-07 1.3010e-08
7 8.3591e-07 1.3010e-08
8 8.3580e-07 1.3010e-08
9 8.3577e-07 1.3010e-08
10 8.3577e-07 1.3010e-08

Table 4.3: Values or variance errors for and A > 0

previous cases the error is never less than the tolerance of Newton's method.

The mean of each u
(N)
j for j = 1, . . . ,M is shown in Figure 4.12. For simplicity only truncated

expansions of degree N = 10 are considered. For the same degree the variance is plotted in Figure
4.13 for µ that follows both the Gaussian (blue) and lognormal (red) distribution.

In the two cases the variance is zero at x = 0, since the values of the solution u(x) approaches
1
2 , that makes null the advection term in the di�erential equation. Therefore in a neighborhood
of x = 0 the equation solved is

µuxx ≈ 0



4.2. NON-LINEAR ODE 57

Figure 4.12: The mean f the polynomial chaos expansions for normal (left) and lognormal (right)
random inputs A > 0

yielding to null impact of the viscosity's variance. The variance is higher at x = a and x = b
indeed by their very de�nition thy are largely in�uenced by the viscosity.

Figure 4.14 represents the Box and Whisker plot and estimated probability density func-
tion for a subset of discretization point. Moreover the mean of the solution is shown for each
discretization points (magenta curve).



58 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.13: The mean of polynomial chaos expansions for normal (left) and lognormal (right)
random inputs A > 0

Figure 4.14: The Bow and Whiskers plot of PCE expansion for A > 0 normal (left) and lognormal
(right) input



4.3. LID-DRIVEN CAVITY 59

4.3 Lid-Driven Cavity

In this section the velocity �eld for a two-dimensional steady �ow in a square domain with sides
and bottom at rest is computed, while the lid is moving at uniform velocity U , this is sometimes
referred as the lid-driven cavity problem.

The incompressible �uid is characterized by Reynolds number (Re) set to 100, moreover the
domain is a square box D = [0, 1] × [0, 1]. The governing equations are the incompressible and
steady Navier-Stokes equations, whose non-dimensional formulation is

u
∂u

∂x
+ v

∂u

∂y
− 1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂p

∂x
= 0

u
∂v

∂x
+ v

∂v

∂y
− 1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂p

∂y
= 0

∂u

∂x
+
∂v

∂y
= 0

where u(x, y) and v(x, y) are the two components of the vector �eld u : R2 → R2, and the scalar
function p(x, y) represents the pressure. These equations can be recast into the vectorial form

(u · ∇)u− 1

Re
∆u +∇p = 0 (4.21)

∇ · u = 0 (4.22)

Due to non-dimensionality of the variables, the velocity �eld is normalized with respect to the
lid velocity U . Therefore for such equations the boundary conditions are

u =

{
(1, 0) on the lid
0 on the sides and on the bottom

The usual weak formulation of the Navier-Stokes equations is �nd a (u, p) ∈ V×Q such that∫
D

(u · ∇)u v +
1

Re
∇u · ∇v + p∇ · v = 0 (4.23)∫

D

∇ · u q = 0 (4.24)

for every test function v = (v1, v2) ∈ V and q ∈ Q. For the de�nition of these spaces see [22].
As suggest in [24] this weak formulation can be recast as

F (u, p) =

∫
D

(u · ∇)u v +
1

Re
∇u · ∇v + p∇ · v −∇ · uq = 0 (4.25)

The weak solution is the zero of the above non-linear function F (u, p). Hence let us compute its
Jacobian applied to a vector (δu, δp) ∈ V ×Q∫

D

(δu · ∇)u v + (u · ∇)δu v +
1

Re
∇δu · ∇v + δp∇ · v −∇ · δu q (4.26)

4.3.1 Freefem++ solver

The solution is computed using Finite Element Method (FEM), thus the domain is triangulated
using 20 points on each side of the domain.

As described in [23] Navier-Stokes equations require suitable de�nition of element spaces in
order to ensure the existence of the discretized solution. In this example Taylor-Hood elements
are used, where two di�erent basis functions are de�ned for the unknowns: quadratic piecewise
polynomials for the velocity components and linear piecewise polynomials for the pressure. The
underlying requirement is the satis�ability of the Babuska-Brezzi (BB) condition (see [23]) that
the elements have to ful�ll.



60 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Moreover a stabilization term is add to the left hand side of (4.25)

Sε(p) = −
∫
D

εpq

in this example ε = 10−8 (see [23] and [24] for details). This value is taken into account in
computation of the Jacobian, by adding

−
∫
D

εδpq

to (4.26).
The key section of Freefem++ code is the Newton's algorithm to compute the solution. That

is

solve Newton([du1,du2,dp],[v1,v2,q]) =

int2d(Th) ( invRe*(Grad(du1,du2)'*Grad(v1,v2) )

+ UgradV(du1,du2, u1, u2)'*[v1,v2]

+ UgradV( u1, u2,du1,du2)'*[v1,v2]

- div(du1,du2)*q - div(v1,v2)*dp+

- 1e-8*dp*q

)

+ int2d(Th) (invRe*(Grad(u1,u2)'*Grad(v1,v2) )

+ UgradV(u1,u2, u1, u2)'*[v1,v2]

- div(u1,u2)*q - div(v1,v2)*p

-1e-8*p*q

)

+ on(1,2,3,4,du1=0,du2=0) ;

u1[] += du1[]; u2[] += du2[]; p[] += dp[];

err = du1[].linfty + du2[].linfty + dp[].linfty;

where UgradV and Grad represent the quantities (u ·∇)uv and u ·∇v and invRe= 1
Re
, more-

over v1, v2 and q are the test functions of weak formulation. The keyword solve is used to
compute the solution of the linear system de�ned.

Newton's algorithm stops when the in�nity norm of the error is less than 10−8, moreover the
values du1, du1 and dp are set to zero on the boundary of the domain, since the �rst guess of
the solution satis�es the boundary condition.

In Figure 4.15 the velocity �eld u, that solves (4.21) and (4.22) for U = 1, is shown. This
chart is achieved by saving the velocity �eld in visualization toolkit format (.vtk), and then
these data are post processed by the software Paraview 4.3.1, an open-source, multi-platform
data analysis and visualization application.

4.3.2 PCE for lid-driven cavity

The uncertainty occurs in the lid velocity, that is perturbed by a Gaussian noise

U = 1 + η η ∼ N
(

0,
1

16

)
The attention is focused on the �rst component u(x, y) of the velocity �eld u, restricted to a
vertical segment S passing through the center of the cavity D

S =

{
(x, y) : x =

1

2
, y ∈ [0, 1]

}
The solution u is evaluated at SM ⊂ S, whose elements are M = 100 equally spaced points. For
simplicity let us call these points xj for j = 1, . . . ,M .



4.3. LID-DRIVEN CAVITY 61

Figure 4.15: Solution of lid-driven cavity problem for U = 1 and Re= 100

Therefore for each SM a PCE of degree N = 5 is computed, thus

u
(N)
j = u(N)(xj , ξ) =

N∑
i=0

ci(xj)Ψ(ξ)

where the basic random variable ξ ∼ U(−1, 1), hence the gPC basis is constituted by Legendre
polynomials on [−1, 1].

The values of mean and of the variance of such approximation are shown in Figure (4.16).
The variance is null in two points: one at the bottom of the cavity, since no-slip condition were
set, and at another point within [0.6, 0.7] ⊂ S interval. Moreover it increases up to reach the lid
since U is the uncertain parameter.

For each PCE a sampling of size 5000 is computed in order to detect the 25-th (red curve)
and 75-th quartile (green curve) which are displayed in Figure 4.17. Moreover in the same �gure,
for ten points in SM , the Box and Whiskers plot is detected.

These computations are done in order to compare these values with the data available in
Ghia, et. al. in [25], that are the blue points represented in the same �gure. The magenta curve

is the mean of each PCE u
(N)
j for j = 1, . . . ,M .



62 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.16: The mean and variance of PCE for lid-driven cavity with Re= 100

Figure 4.17: Box and Whisker plot for Lid-driven cavity with Re= 100

4.4 Pyclaw

The last example on which NISP technique is applied concerns the two dimensional transport
equation

qt + uqx + vqy = 0 (4.27)

on the square domain D = [0, 2]× [0, 2], which is integrated, with respect to time, on T = [0, 1].
The function q : T×D → R is the conserved quantity, while u ∈ R and v ∈ R are the components
of the constant velocity �eld that characterizes the advection.

The initial data is

q(0, x, y) = e−w·[(x−0.3)2+(y−0.3)2]

where w = 40 and (x, y) ∈ D. To shorten the notation let us call the spatial coordinates



4.4. PYCLAW 63

x = (x, y).

The software, used to compute the solution, is Pyclaw a python interface of Clawpack pack-
ages, that is an hyperbolic partial di�erential equation solver in 1D, 2D, and 3D, available for
Linux distributions.

Clawpack stands for �Conservation Laws Package� and it was initially developed for linear
and non-linear hyperbolic systems of conservation laws, with a focus on implementing high-
resolution Godunov type methods using limiters in a general framework. These Finite Volume
Methods require a Riemann solver to resolve the jump discontinuity at the interface between two
grid cells into waves propagating into the neighboring cells. (For furhter details see LeVeque [26])

Since a Riemann solver is already set, the Pyclaw code is considered as a black-box: only
marginals data of the problem can be customized, such as the domain of integration, the size of
the mesh and the velocity �eld.

The domain D is discretized by an uniform rectangular grid of size mx × my, where
mx = my = 50. Thus for k = k(i, j) ∈ {1, . . . ,mx · my} for all i = {1, . . . ,mx} and
j = {1, . . . ,my}, with a suitable sorting

xk = xk(i,j) =
(
xi, yj

)
Moreover the time discretization is made by mT = 10 equally spaced time steps {th}mTh=1.

Since the time domain is T = [0, 1] the time step's length is δt = 1
10 .

The uncertainties are the two components of the velocity �eld, both of them is perturbed
with a Gaussian noise, thus they are normally distributed random variables

u ∼ N
(

1,
1

202

)
v ∼ N

(
1

2
,

1

302

)
For each time step the PCE computed is a vectorial quantity, thus for each couple (th,xk)

q(N)(th,xk, ξ) =
∑
i≤N

ci(th,xk)Ψi(ξ)

The multivariate decomposition is truncated at total degree N = 5, and each components of the
basic random vector ξ = (ξ1, ξ2) whose components are two N (0, 1/2).

In such setting, since N = 5, NISP library computes (5 + 1)2 = 36 realizations of the two
input random variables. These realizations are two dimensional points whose �rst component
concerns u, while the second represents a realization of v. Then these values are plugged into the
Pyclaw script, and then the simulations are run, getting the solution at each times steps. These
values are imported within Scilab and used to compute the coe�cients of the decomposition.

Let us point out that the data are saved by Pyclaw using Fortran ordering, for compatibility
with Fortran routines, therefore, when imported in Scilab, they are set as row-wise vector to be
compatible with C++ ordering that characterizes NISP library. Furthermore this issue has to
be taken into account when the solution is visualized, as described in Appendix A.

In Figure 4.18 the mean of the polynomial chaos expansion at �nal time is displayed, moreover
it is also shown the initial data.

The variance of the solution is shown in Figure 4.19, for each time step. It also points out
how these values variate more along the x-direction than the on y-direction. This is perfectly
coherent with higher variance that characterizes the �rst component u of the vector �eld than
its second component v.

As last remark let us compare the e�ects of considering uncertainties into model simulation
with respect to single deterministic simulation. Thus the Pyclaw code is run for the deterministic
values of vector �eld [

u
v

]
=

[
1

0.5

]



64 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.18: Initial data (left) and average of the polynomial chaos expansions for each point of
the mesh at t=1 (right)

Figure 4.19: Values of the variance for all time steps

and then, for each time step th, the absolute value of the di�erence between the average of each
{q(N)(th,xk)}mx·myk=1 and the deterministic simulation. Then these values are plotted in Figure
4.20, Figure 4.21, Figure 4.22, Figure 4.23 and Figure 4.24.

These charts point out how the di�erence increases when the integration in time proceeds
(see color bar), moreover these values highlight that the uncertainties, are not a marginal data
in a model, their in�uence has to be taken into account for correct validation of a simulation.



4.4. PYCLAW 65

Figure 4.20: Values of the di�erence between deterministic and UQ simulations for the time steps

t = 0.2 (left) and t = 0.3 (right)

Figure 4.21: Values of the di�erence between deterministic and UQ simulations for the time steps

t = 0.4 (left) and t = 0.5 (right)



66 CHAPTER 4. APPLICATION OF NISP TOOLBOX

Figure 4.22: Values of the di�erence between deterministic and UQ simulations for the time steps

t = 0.6 (left) and t = 0.7 (right)

Figure 4.23: Values of the di�erence between deterministic and UQ simulations for the time steps

t = 0.8 (left) and t = 0.9 (right)



4.4. PYCLAW 67

Figure 4.24: Values of the di�erence between deterministic and UQ simulations for the time steps
t = 0.9 (left) and t = 1 (right)



68 CHAPTER 4. APPLICATION OF NISP TOOLBOX

4.5 Conclusions

These examples show that NISP technique is useful either to approximate with low number of
polynomials random variables or to deal with the solution of a process in presence on uncer-
tainties. Moreover the �exibility of NISP approach is proven since it is applied to several type
of data sources, which are generated by completely tailored solvers, partially customizable ones
and black-box codes.

As last remark let us point out how NISP is a very e�cient tool for analyzing the aleatory
solution of a process in presence of uncertainties even if the underlying model is deterministic.
This is its most advantage, since it splits the approach to a given physical phenomena into two
distinct steps: �rst one can focus its attention to detect the deterministic model of the physical
phenomena of interest, then the uncertainties can be taken into account with NISP, exploiting
the already detected model. Moreover NISP allows to consider by another point of view all
the existing literature of deterministic model: they are still useful to extend the discussion in
presence of uncertainties.



Appendix A

General topics: random variables,

histograms and softwares

A.1 Equally distributed random variables

In this section it is proven, via a practical example, that there exist two equally distributed
random variables X and Y , de�ned on the same probability space (Ω,Σ,P), which are not the
same measurable function.

Let X be a standard normal random variable, whose probability density function is

fX(x) =
1√
2π
e−

x2

2

Let us de�ne a new random variable Y = −X. They are not the same Σ-measurable functions
but actually X ∼ Y . Indeed by symmetry of probability density function

P(Y ≤ t) = P(−X ≤ t) = P(X ≥ t) =

∫ +∞

t

fX(x)dx =

∫ t

−∞
fX(x)dx = P(X ≤ t)

A.2 Histogram of multi-element PCE

Let us discuss how to handle a sampling of a multi-element PCE of a random variable Y , in order
to build a cumulative histogram, that allows to compare this decomposition with the probability
density function of Y .

For simplicity let us suppose to be in aN univariate setting, and let us consider a partition
A = {Ak}Nek=1 of the supportD of the probability density function of Y . Without loss of generality
they are set

Ak = (a(k−1), a(k)]

for each k ∈ {1, 2, . . . , Ne}.

Let Sk be the sampling of the truncated PCE of Yk random variables. Let us call {Cj}j∈J
the collection of bins of the histogram, for J = {1, 2, . . . ,M}. They are intevals of kind

Cj = (xj , xj+1] j = 1, . . . ,M

Moreover let h
(k)
j be the number of data of Sk that lies in Cj . Two issues have to be discussed.

• Bins and partition of support.
Two di�erent partitions are de�ned on D: A and the collection of bins {Cj}j∈H . In general

69



70APPENDIX A. GENERAL TOPICS: RANDOMVARIABLES, HISTOGRAMS AND SOFTWARES

setting they do not coincide, therefore for each k ∈ {2 . . . , Ne − 1} there exist an index j
such that

a(k−1) ∈ Cj
The values a(0) and a(Ne) are not considered since they conicide with the edges of the
support D.

• Normalization.
Usually the area of histogram h(x) is de�ned as∫ x(M+1)

x(1)

h(x) =

M∑
j=1

hj(xj+1 − xj)

where x(M + 1) is the supremum edge of the M -th bin, while x(1) is the in�mum edge of
the �rst bin. Moreover hj represents the number of values within the j-th bin.

In order to compare a sampling with probability density function, the area of the histogram
has to be normalized to one, thus for j = 1, . . . ,M

hj =
hj
N

where N is the size of the sampling considered.

For simplicity let us consider a �xed index j ∈ J , thus the attention is focused on a
particular bin Cj .

In multi element PCE setting the normalization involves the weight associated to each
element of the partition A. This connection is expressed by equations (2.6) and (2.7)
which suggest that the area of each sampling Sk has to be set equal to pk = P(Y ∈ Ak).
Therefore let us de�ne

h
(k)

j =
h

(k)
j

N
pk

where N is the sum of the sizes of the samplings involved. Then, for each index
k ∈ {1, 2, . . . , Ne}, let Ij ⊂ J be a set of indexes such that

Ak ∩ Cj 6= ∅

Then the number of realizations in Cj is

hj =
∑
i∈Ij

h
(i)

j

Thus the histogram build with {Cj}j∈J bins and these values {hj}j∈J has the area nor-
malized to one.

A.3 Scilab's shell (sh) command execution

For the lid driven cavity problem and advection equation the solution is computed by an external
software (Frefem++ and Pyclaw). NISP technique require the solution for a selected collection
of realizations of the input random variables. Thus Scilab's shell command execution is needed
to run the external scripts (The extension are .edp and .py respectively).

For simplicity let us consider the lid driven cavity example, where a univariate decomposi-
tion occurs. First is de�ned a model (driven_cavity2D_model.edp), in which the numerical
quantities, that one wishes to customize during the execution, are replaced with special strings,
de�ned by the user, such as $$variable$$.

Then the usual NISP code is implemented, where in place of evaluation of the model, a loop
in each realization is made, such as



A.3. SCILAB'S SHELL (SH) COMMAND EXECUTION 71

for i=1:size(inputdata,1)

run_file(inputdata(j),lpath,j,M)

save_data_path = fullfile(lpath,'run','data'+string(j)+'.txt');

outputdata(:,j) = fscanfMat(save_data_path);

end

The three code lines create, by substituting the user's identi�ers with numerical values, an
executable .edp �le and execute the scripts. Than the data, located in save_data_path, are
import within Scilab due to fscanfMat. The Scilab routine run_file is shown below in detail.
Moreover it can be divided in two section.

The former is about the substitution of all user's identi�ers (such as $$variable$$) with
numerical values. Namely

function run_file(U,lpath,counter,M)

//

// INPUT

//

// U = realizations of the inputs random variable

// lpath = directory in which data are saved and routines lie

// counter = counter to save the data of the i-th realization

// M = discretization points od the

//

// output (void) = cration of executible file and that is run

modelfile = fullfile(lpath,"driven_cavity2D_model.edp");

// reading the model

fd = mopen(modelfile,'r');

txt = mgetl(fd);

mclose(fd);

// Substitution of data for itxt=1:size(txt,1)

txtline = txt(itxt);

ind = strindex(txtline,"$$");

if isempty(ind) then

continue;

end

ind = strindex(txtline,"$$MUVAL$$");

if isempty(ind) then

txtline = strsubst(txtline,"$$MUVAL$$",string(U));

end

ind = strindex(txtline,"$$COUNTER$$");

if isempty(ind) then

Ustring = string(U);

txtline = strsubst(txtline,"$$COUNTER$$",string(counter));

end

ind = strindex(txtline,"$$NofPoints$$");

if isempty(ind) then

Ustring = string(U);

txtline = strsubst(txtline,"$$NofPoints$$",string(M));

end

txt(itxt) = txtline;

end

// create the modified executible file

destfile = fullfile(lpath,"run","driven_cavity2D.edp");



72APPENDIX A. GENERAL TOPICS: RANDOMVARIABLES, HISTOGRAMS AND SOFTWARES

fd = mopen(destfile,'wt');

mputl(txt,fd);

mclose(fd);

In this speci�c section, a realization of the random variable is substituted to $$MURAL$$ spe-
cial string. The others are used to customize the number of points on which the solution is
evaluated ( $$NofPoints$$ ) and to set a counter ( $$COUNTER$$) to save in a text �le all data
computed.

The second part of the code is about the execution of the �le

// Bat file

exestring = """C:\ Program Files (x86)\ FreeFem++\ FreeFem++.exe""...

-nowait -nw -ne -cd -f driven_cavity2D.edp";

batfile = fullfile(lpath,"run","test.bat");

fd = mopen(batfile,'wt');

mputl(exestring,fd);

mclose(fd);

// Run

exestring = "cmd.exe /C test.bat";

exestr = "pushd """ + fullfile(lpath,"run") + """&& " + exestring;

unix_w(exestr);

endfunction

Since the operative system is windows a .bat �le is created specifying the location of the
program FreeFem++.exe and the �le that one wishes to run. Then is generated the executable
string for windows prompts exestr where are set the correct directory, and the .bat �le. Then
using the Scilab's shell (sh) command unix_w the code is run, moreover the standard cmd output
is redirected to Scilab window.

The situation is similar to execute a Pyclaw script. The �le run_data.sci follows the same
idea. The only changes are about the special characters used and about the shell command
string. Indeed the operative system is Linux, thus to execute the Pyclaw �le is enough to set

unix_w('python '+destfile);

in place of creation of bat �le. Notice that destfile is the name .py document that one
wishes to run.

A.4 Installation of Pycalw

Pyclaw is the python distribution based on Clawpack, a dedicated software for computing the
solution of 1D, 2D, 3D hyperbolic di�erential equations, when a Riemann Solver is detected. See
LeVeque [26] for details.

The installation were made on Ubuntu 14.04.02 LTS. Moreover the shell commands were

sudo apt-get install python-matplotlib

sudo apt-get install python-scipy

sudo apt-get install python-pip

sudo apt-get install gfortran

sudo pip install clawpak

The �rst two are libraries for visualization toolkit of Pyclaw, the Fortran compiler is needed
since Clawpack uses Fortran codes and pip is a package management system used to install and
manage software packages written in Python.



A.5. ON VECTOR ORDERING: FORTRAN, C++ AND SCILAB 73

A.5 On vector ordering: Fortran, C++ and Scilab

This discussion is a consequence of the interaction among Pyclaw, C++ NISP and Scilab. When
the solution is computed via Pyclaw solver, it is saved as (using meta-language)

for j=1:my

for i=1:mx

print q(i,j)

end

end

where mx are the number of discretization points along x-direction and my are the number
of point in y-direction. It turns out that the solution is saved as a column array, for each time
step. Thus, in order to be compatible with C++ routines of NISP library, is set as a row vector.
This ordering is kept during computation of PCE for each discretization node.

For simplicity let consider the example of the advection equation. If for instance, for a chosen
time step, one is interested in visualizing the behavior of the average of the vectorial PCE, the
row vector has to be recast into a mx ×my matrix. First it is set again as column and then the
Scilab routine

Av = matrix(average,mx,my)

is used which stacks column-wise the vector average into Av matrix.

The subtleties arise when Av interacts with the two visualization routines surf and Sgrayplot
of Scilab. Indeed the �rst requires X, Y and Z, where [X,Y ] is the output for meshgrid routine.
Moreover for each suitable indexes i and j

Z
(
X(i, j), Y (i, j)

)
= Z(x(j), y(i))

therefore Av has to be transposed in order to be compatible the previous relation, indeed the
column of Av are evaluation of the solution for constant y-component. Thus the correct code
line to visualize Av via surf routine is

surf(X,Y,Av')

Di�erent situation happens for Sgrayplot which computes the smooth 2D plot of a surface
using colors. It requires x, y which are the two row vectors that describe the discretization point
on each side of the domain, and Z, that is

Z(i, j) = Z
(
x(i), y(j)

)
therefore, despite in previous case, the routine matrix return compatible values for Sgrayplot
visualization scripts.



74APPENDIX A. GENERAL TOPICS: RANDOMVARIABLES, HISTOGRAMS AND SOFTWARES



Bibliography

[1] S. Baldo, Lecture notes of functional analysis� Part 1, a.a 2012/2013

[2] G. Andreaus, R. Askey, R.Ray, Special Function, Cambridge university press, 1999

[3] Walter Gautschi, Orthogonal polynomials Computations and Approximations, Oxford
university press, 2004

[4] A. P. Sahanggamu, Generating Function and their applications, MIT 2006.
URL http://ocw.mit.edu/courses/mathematics/18-104-seminar-in-analysis-applications-to-
number-theory-fall-2006/projects/peter_s.pdf.

[5] T. Tang, The Hermite spectral method for Gaussian-type functions, SIAM J. Sci. Comput.
14(3) (1993), 594�606

[6] Spiegel M.R, Fourier Analysis, Schaum's outline series, McGraw-Hill

[7] Joseph Bak, Donald J. Newman, Complex Analysis, Springel, Third Edition 2010

[8] E.C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford University Press, London,
1939.

[9] O.Kallenberg, Foundation of Moderns Probability, Springer, 1997

[10] Paolo Baldi, Calcolo delle probabilità, McGraw-Hill 2007, Milano

[11] M. Reed and B. Simon, Methods of modern mathematical physics. 1. Functional analysis,
Academic press, New York, 1972

[12] O.P. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quanti�cation Springer,
2010

[13] Bernt Oksendal Stochastic di�erential equations Springer, 2003

[14] O. G. Ernst, A. Mugler, H.-J. Starklff, E. Ullmann, On the Convergence of Gen-
eralized Polynomial Chaos Expansions, ESAIM: Mathematical Modelling and Numerical
Analysis , 46(2), 317-339. 2011

[15] Dongbin Xiu, Numerical Methods for Stochastic Computations Priceton University Press,
2010

[16] R. Ghanem and P. Spanos, Stochastic Finite Elements: a Spectral Approach, Springer-
Verlag, 1991

[17] X. Wan, G.E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary
probability measures, SIAM J. Sci. Comput.Vol. 28, No. 3, pp. 901�928 , 2006

[18] R Cannarsa, T.D'Aprile, Lectures note on Measure Theory and Functional Analysis
Dipartimento di matematica, Università di Roma �Tor Vergata�, a.a. 2006/07

[19] Motoi J. Namihira, Probabilistic uncertainty analysis and its applications in option mod-
els, The Florida State University Collage of Arts and Science, 2013

75



76 BIBLIOGRAPHY

[20] G.Borzi, A.Bassi, Data mining tutorial.
http://www.openeering.com/sites/default/�les/Data_mining_0.pdf.

[21] B.W. Silverman, Density Estimation for Statistics and Data Analysis. Chapman &
Hall/CRC, 1998.

[22] Alfio Quarteroni, Modellistica Numerica per Problemi Di�erenziali, Springer, 2012

[23] H.P.Langtange, R.Winther, Numerical Methods for Incompressible Viscous Flow, Ad-
vances in Water Resources. 25(8), Elsevier, 2002

[24] Hecht, F. FreeFem++ Manual. http://www.freefem.org/�++/ftp/freefem++doc.pdf.
2012

[25] Ghia, U., Ghia, K. N. and C. T. Shin, High-Re Solutions for Incompressible Flow Using
the Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics. 48,
387-411. 1982

[26] R.J. LeVeque, Numerical Methods for Conservation Laws. Springer, 1992


