

www.openeering.com

powered by

DATA FITTING IN SCILAB

In this tutorial the reader can learn about data fitting, interpolation and
approximation in Scilab. Interpolation is very important in industrial applications
for data visualization and metamodeling.

Level

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Data Fitting www.openeering.com page 2/16

Step 1: Purpose of this tutorial

Many industrial applications require the computation of a fitting function in

order to construct a model of the data.

Two main data fitting categories are available:

 Interpolation which is devoted to the development of numerical

methods with the constraint that the fitting function fits exactly all

the interpolation points (measured data);

 Approximation which is devoted to the development of numerical

methods where the type of function is selected and then all

parameters are obtained minimizing a certain error indicator to

obtain the best possible approximation.

The first category is useful when data does not present noise, while the

second one is used when data are affected by error and we want to

remove error and smooth our model.

Step 2: Roadmap

In the first part we present some examples of polynomial interpolation and

approximation. After we propose exercises and remarks.

Descriptions Steps

Interpolation 3-16

Approximation or curve fitting 17-20

Notes 21-22

Exercise 23

Conclusion and remarks 24-25

Data Fitting www.openeering.com page 3/16

Step 3: Interpolation

The idea of approximation is to replace a function with a function

 selected from a given class of approximation function .

Two main cases exist:

 Continuous function: In this case the function is known

analytically and we want to replace it with an easier function, for

example we may want to replace a complex function with a

polynomial for which integration or differentiation are easy;

 Discrete function: In this case only some values of the function

 are known, i.e. and we want to make a mathematical

model which is close to the unknown function such that

it is possible to establish the value of outside the known

points.

Example of approximation of a continuous function using a piecewise

approximation

Step 4: Main class of interpolation function

Several families of interpolation functions exist. The most common are:

 Polynomial interpolation of degree : In this case, we

approximate data with a polynomial of degree of the form

 Piecewise polynomial: In this case the interval is subdivided into

subintervals in which we define a polynomial approximation of low

degree with or without continuity on the derivatives between each

subinterval.

Example piecewise interpolation with first derivative continuous and

discontinuous connections

Data Fitting www.openeering.com page 4/16

Step 5: Test case: Runge function

The Runge function is defined as

Typically is considered in the interval [-5,5].

In our examples we consider 7 interpolation points, denoted with ,

equally distributed in the interval [-5,5].

The following code implements the Runge function and perform

visualization.

// Define Runge function

deff('[y]=f(x)','y = 1 ./(1+x.^2)');

// Interpolation points

xi = linspace(-5,5,7)'; yi = f(xi);

// Data

xrunge = linspace(-5,5,101)'; yrunge = f(xrunge);

// Plot Runge function

scf(1); clf(1);

plot(xrunge,yrunge,'b-');

plot(xi,yi,'or');

xlabel("x");

ylabel("y");

title("Runge function");

Interpolation function

Data Fitting www.openeering.com page 5/16

Step 6: Piecewise constant interpolation

Piecewise constant interpolation is the simplest way to interpolate data. It

consists on locating the nearest data value and assigning the same value

to the unknown point.

Piecewise constant interpolation

Step 7: Piecewise constant interpolation in Scilab

The Scilab command used to perform piecewise interpolation is

"interp1" where the third argument is "nearest". The fourth argument

specifies if an extrapolation method should be used when the evaluation

points are outside the interval of the interpolation points.

// Interpolation

// Evaluation points

xval = linspace(-6,6,101)';

xx_c = xval;

yy_c = interp1(xi,yi,xx_c,'nearest','extrap');

// Plot

scf(3);

clf(3);

plot(xrunge,yrunge,'k-');

plot(xx_c,yy_c,'b-');

plot(xi,yi,'or');

xlabel("x");

ylabel("y");

title("Piecewise interpolation");

legend(["Runge func";"Interp.";"Interp. val"]);

Piecewise constant interpolation

Data Fitting www.openeering.com page 6/16

Step 8: Piecewise linear interpolation

Linear interpolation is a polynomial of degree 1 that connects two points,

, and the interpolant is given by

Piecewise linear interpolation (green) and extrapolation (red)

Step 9: Linear interpolation in Scilab

The Scilab command used to perform linear interpolation is again

"interp1" but now the third argument is "linear". We can note that the

code is similar to the previous one for piecewise interpolation.

// Interpolation

xx_l = xval;

yy_l = interp1(xi,yi,xx_c,'linear','extrap');

// Plot

scf(4);

clf(4);

plot(xrunge,yrunge,'k-');

plot(xx_l,yy_l,'b-');

plot(xi,yi,'or');

xlabel("x");

ylabel("y");

title("Linear interpolation");

legend(["Runge func";"Interp.";"Interp. val"]);

Piecewise linear interpolation

Data Fitting www.openeering.com page 7/16

Step 10: Polynomial interpolation

Given a set of data points , where all are different, we find

the polynomial of degree which exactly passes through these points.

Polynomial interpolations may exhibits oscillatory effects at the end of the

points. This is known as Runge phenomenon. For example, the Runge

function has this phenomenon in the interval [-5,+5] while in the interval [-

1,1] this effect is not present.

Polynomial interpolation

Step 11: Polynomial interpolation in Scilab

The Scilab command used to perform polynomial interpolation is

"polyfit" which is included in the zip file (see references). The syntax

requires the interpolation points and the degree of the polynomial

interpolation which is equal to the number of point minus one.

Note that the command "horner" evaluates a polynomial in a given set of

data.

// Import function

exec("polyfit.sci",-1);

// Interpolation

xx_p = xval;

[Pn] = polyfit(xi, yi, length(xi)-1);

yy_p = horner(Pn,xx_p);

// Plot

scf(5);

clf(5);

plot(xrunge,yrunge,'k-');

plot(xx_p,yy_p,'b-');

plot(xi,yi,'or');

xlabel("x");

ylabel("y");

title("Polynomial interpolation");

legend(["Runge func";"Interp.";"Interp. val"]);

Polynomial interpolation

Data Fitting www.openeering.com page 8/16

Step 12: Cubic spline interpolation

Cubic spline interpolation uses cubic polynomials on each interval. Then

each polynomial is connected to the next imposing further continuity

equations for the first and second derivatives.

Several kinds of splines are available and depend on how degrees of

freedom are treated. The most well-known splines are: natural, periodic,

not-a-knot and clamped.

Spline interpolation

Step 13: Cubic spline in Scilab

The Scilab command used to perform cubic spline interpolation is

"splin". Several types of splines exist and can be specified by setting the

third argument of the function. The evaluation of the spline is done using

the command "interp" where it is possible to specify the extrapolation

strategy.

// Splines examples

d = splin(xi, yi,"not_a_knot");

// d = splin(xi, yi,"natural");

// d = splin(xi, yi,"periodic");

xx_s = xval;

yy_s = interp(xx_s, xi, yi, d, "linear");

// Plot

scf(6);

clf(6);

plot(xrunge,yrunge,'k-');

plot(xx_s,yy_s,'b-');

plot(xi,yi,'or');

xlabel("x");

ylabel("y");

title("Spline interpolation");

legend(["Runge func";"Interp.";"Interp. val"]);

Cubic spline interpolation with linear extrapolation

Data Fitting www.openeering.com page 9/16

Step 14: Radial Basis Interpolation (RBF)

Radial basis function modeling consists of writing the interpolation function

as a linear combination of basis functions that depends only on the

distance of the interpolation points . This is equal to:

Using the interpolation conditions we have to solve the

following linear system

where the element .

 Many radial basis functions exist, the most famous are:

 Gaussian:

 Multiquadratic:

 Inverse multiquadratic:

 Thin plate spline:

Step 15: Gaussian RBF in Scilab

In our example we use the Gaussian RBF.

// Gaussian RBF

deff('[y]=rbf_gauss(r,sigma)','y = exp(-r.^2 ./(2*sigma))');

// Plot

scf(7);

clf(7);

r = linspace(0,3);

y1 = rbf_gauss(r,0.1);

y2 = rbf_gauss(r,1.0);

y3 = rbf_gauss(r,2.0);

plot(r,y1,'k-');

plot(r,y2,'b-');

plot(r,y3,'r-');

xlabel("r");

ylabel("$\phi(r)$");

title("Gaussian rbf");

legend(["$\sigma = 0.1$";"$\sigma = 1.0$";"$\sigma = 2.0$"]);

Gaussian RBF for different value of sigma

Data Fitting www.openeering.com page 10/16

Step 16: RBF in Scilab

On the right we report the optimal Gaussian RBF obtained for the

interpolation of the Runge function where we have optimized the

parameters. The full code is reported in the Openeering web site.

Generally, each radial basis function depends on a parameter and this

parameter is known as modeling parameter. This parameter has effect on

the oscillation behavior of the function and the optimal choice is not an

easy task. Many techniques are available for finding the best modeling

parameter, the most famous is probably the “leave one out”.

The leave-one-out cross-validation (LOOCV) consists in using a single

point from the original set of data as a validation data. The validation of

the model is given by that point. This process can be repeated for all the

points in the data set such that, in the end, all the points are used once as

validation point. This method can produce a mean value of all these leave-

one-out errors and gives a global estimate of the model.

Since a value that estimates the model is available, we can use an

optimization solver for finding the best parameter in order to minimize the

error of the model.

Behaviour of the error versus sigma

Optimal RBF with (left), non optimal solution (right)

Data Fitting www.openeering.com page 11/16

Step 17: Approximation or curve fitting

When data is affected by errors, polynomial interpolation cannot be

appropriate since the approximation function is constrained to be through

the interpolation points. So it makes sense to fit the data starting from a

given class of functions and minimizing the difference between the data

and the class of functions, i.e.

The "polyfit" function computes the best least square polynomial

approximation of data. If we choose in the "polyfit" function, we

approximate data with linear function of the form , i.e. we

compute the linear least squares fitting.

Schematic example of min interpretation

Step 18: 1D approximation

In this example we add noise to the function and then we

make polynomial approximation of order 1 and 2.

The critical code is reported here (only case 1):

np = 100; noise = 0.7*(rand(np,1)-0.5);

x = linspace(0,2,np)';

yexact = x.^2 + x;

ynoise = yexact + noise;

// degree 1 approximation

p1 = polyfit(x, ynoise, 1);

p1val = horner(p1,x);

scf(10); clf(10);

plot(x,yexact,'k-'); plot(x,ynoise,'b-'); plot(x,p1val,'r-');

For details download the zip file with the source codes.

Comparison of best fitting for degree 1 and 2

Data Fitting www.openeering.com page 12/16

Step 19: 2D approximation

In this example we want to approximate scattered data with a linear least

square fitting in two dimensions.

Given the polynomial approximation and the

scattered interpolation points , the optimal computation of the

unknown parameters requires to solve the following

overdetermined linear system

The matrix is known as the Vandermonde matrix and arises in polynomial

interpolation. The i-th row of the matrix corresponds to the polynomial

evaluated at point i-th. In our case, the i-th row corresponds to:

This is done using the Singular Value Decomposition (SVD) or

equivalently using the backslash command. Here, we report only the

solution stage. The full code can be downloaded from our web page.

// Generating random points along a plane

np = 30;

noise = 0.5*(rand(np,1)-0.5);

// Extract data

x = rand(np,1);

y = rand(np,1);

znoise = -x+2*y+noise;

// Vandermonde matrix for P(x,y) = a+b*x+c*y

V = [ones(np,1),x,y];

// Find coefficient i.e. minimize error norm

coeff = V\znoise;

Example of least square approximation in 2D

Data Fitting www.openeering.com page 13/16

Step 20: nD linear approximation

The previous example can be easily extended to an n-dimensional

problem, i.e. we search for an approximation of the form

.

Here, we report the code for the problem where some coefficients may be

equal to zero and could be deleted from the estimation problem.

The idea here implemented consists of the following strategy:

1. Perform least square approximation of data;

2. Find the zero coefficients with some pre-fixed tolerance;

3. Re-perform least square approximation of the reduce problem

where we have deleted the columns of the Vandermonde matrix

corresponding to the zero coefficients.

The code reported on the right estimates these coefficients. The full code

can be downloaded from our website.

n = 10; // Problem dimensions

neval = 100; // Number of evaluation points

pcoeff = 1:n+1; // Problem coefficient ([a0, a1, ..., an])

pcoeff([2,5,8]) = 0; // Some zero coefficients

// Evaluation points

[xdata,ydata] = generatedata(pcoeff, n, neval);

// Estimate coefficients

pstar = estimatecoeff(xdata, ydata);

// Find "zero" coefficient (define tolerance)

tol = 0.1;

zeroindex = find(abs(pstar)<=tol);

// re-estimate coefficients

pzero = estimatecoeffzero(xdata, ydata, zeroindex);

The code use the following functions:

 y=evaldata(pcoeff,x)

that evaluates the polynomial defined by coefficients

 on point adding a uniform

noise on the definition of the coefficients;

 [xdata,ydata]=generatedata(pcoeff,n,neval)

that generates the evaluation points and their values;

 pstar=estimatecoeff(xdata,ydata)

that estimates the polynomial coefficients using the least square

method;

 pzero=estimatecoeffzero(xdata,ydata,zeroindex)

that estimates the polynomial coefficients where some coefficients,

specified by the vector zeroindex , are equal to zero.

Data Fitting www.openeering.com page 14/16

Step 21: Another polyfit function

The numerical solution of the polynomial interpolation problem requires to

solve the linear system with the Vandermonde matrix. Numerically, this

problem is ill-conditioned and requires an efficient strategy for a “correct”

solution. This is performed by using, for example, QR factorization.

The function “polyfit_fulldemo.sce”, provided by Konrad Kmieciak,

and contained in the zip file, is an alternative to the polyfit function.

function [u]=polyfit(x, y, n)

 // Vandermonde

 for k=n:-1:0

 if k==n then w=0;

 end

 w=w+1;

 Xu(:,w)=[x.^k];

 end

 // QR

 [q r k]=qr(Xu,'0');

 s = inv(r) * (q' * y); // s = r \ (q' * y)

 for o=1:length(s)

 u(find(k(:,o)>0))=s(o);

 end

endfunction

Step 22: Industrial applications of data fitting

Interpolation and approximation are two major techniques for constructing

mathematical models. Mathematical models can substitute complex model

in real-case applications.

When the original model is complex, or when it requires long and costly

evaluations (for example with finite element analysis – FEA), a simplified

model of the original model is required.

The model of the model is often called metamodel (a.k.a. response

surfaces) and the metamodeling technique is widely used in industrial

applications.

In real-case applications, when optimizing product or services, we need to

evaluate several times the model. This means that having a metamodel

that can be evaluated faster is, most of the time, the only way for finding

optimal solutions.

Metamodeling
+

Response surface
+

Self-Organizing Maps
+

Neural Networks
=

Industrial applications

Data Fitting www.openeering.com page 15/16

Step 23: Exercise on exponential decay

As an exercise, try to estimate the coefficient of a decay function of the

form:

using a linear least square fitting of data.

Hits: Use a logarithmic change of variable to reduce the problem in the

following form

Exponential decay fitting of data

Step 24: Concluding remarks and References

In this Scilab tutorial we have shown how to apply data fitting in Scilab

starting from piece-wise interpolation, presenting polynomial fitting and

cubic spline, and ending up with radial basis functions (RBF).

In the case of polynomial interpolation we used the function "polyfit"

which can be downloaded from the Scilab webpage and is included in the

provided source codes.

1. Scilab Web Page: Available: www.scilab.org.

2. Openeering: www.openeering.com.

3. Javier I. Carrero is the author of the polyfit function. The original

code is available on the Scilab.org web pages and is included in the

zip file.

http://www.scilab.org/
http://www.openeering.com/

Data Fitting www.openeering.com page 16/16

Step 25: Software content

To report bugs or suggest improvements please contact the Openeering

team. We thank Konrad Kmieciak for reporting us a new version of the

polyfit function.

www.openeering.com

Thank you for your attention,

Manolo Venturin
 Silvia Poles

Main directory

ex0.sce : Plotting of the first figure

ex1.sce : Solution of exercise 1

interpolation.sce : Interpolation examples codes

polyfit.sci : Polyfit function

polyfit_manual.pdf : Polyfit manual

polyfit_fulldemo.sce : Another version of polyfit

estimate_lincoeff.sce : Estimantion of nD linear model

license.txt : The license file

http://www.openeering.com/

