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DATA FITTING IN SCILAB 

In this tutorial the reader can learn about data fitting, interpolation and 
approximation in Scilab. Interpolation is very important in industrial applications 
for data visualization and metamodeling.  
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Step 1: Purpose of this tutorial 

Many industrial applications require the computation of a fitting function in 

order to construct a model of the data. 

Two main data fitting categories are available: 

 Interpolation which is devoted to the development of numerical 

methods with the constraint that the fitting function fits exactly all 

the interpolation points (measured data); 

 Approximation which is devoted to the development  of numerical 

methods where the type of function is selected and then all 

parameters are obtained minimizing a certain error indicator to 

obtain the best possible approximation. 

 

The first category is useful when data does not present noise, while the 

second one is used when data are affected by error and we want to 

remove error and smooth our model. 

 

 

 

 

 

 

 
 

Step 2: Roadmap 

In the first part we present some examples of polynomial interpolation and 

approximation. After we propose exercises and remarks. 

 
 

 

Descriptions Steps 

Interpolation 3-16 

Approximation or curve fitting 17-20 

Notes 21-22 

Exercise 23 

Conclusion and remarks 24-25 
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Step 3: Interpolation 

The idea of approximation is to replace a function  with a function 

 selected from a given class of approximation function .  

 

Two main cases exist: 

 Continuous function: In this case the function  is known 

analytically and we want to replace it with an easier function, for 

example we may want to replace a complex function with a 

polynomial for which integration or differentiation are easy; 

 Discrete function: In this case only some values of the function 

 are known, i.e.  and we want to make a mathematical 

model  which is close to the unknown function  such that 

it is possible to establish the value of  outside the known 

points. 

 

 
Example of approximation of a continuous function using a piecewise 

approximation 

Step 4: Main class of interpolation function 

Several families  of interpolation functions exist. The most common are: 

 Polynomial interpolation of degree : In this case, we 

approximate data with a polynomial  of degree  of the form 

 

 Piecewise polynomial: In this case the interval is subdivided into 

subintervals in which we define a polynomial approximation of low 

degree with or without continuity on the derivatives between each 

subinterval. 

 

 

 
Example piecewise interpolation with first derivative continuous and 

discontinuous connections 
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Step 5: Test case: Runge function 

The Runge function is defined as 

 

Typically is considered in the interval [-5,5]. 

In our examples we consider 7 interpolation points, denoted with , 

equally distributed in the interval [-5,5]. 

 

The following code implements the Runge function and perform 

visualization. 

 
 
 
 
// Define Runge function 

deff('[y]=f(x)','y = 1 ./(1+x.^2)'); 

 

// Interpolation points 

xi = linspace(-5,5,7)'; yi = f(xi); 

 

// Data 

xrunge = linspace(-5,5,101)'; yrunge = f(xrunge); 

 

// Plot Runge function 

scf(1); clf(1); 

plot(xrunge,yrunge,'b-'); 

plot(xi,yi,'or'); 

xlabel("x"); 

ylabel("y"); 

title("Runge function"); 

 

 

  

 

 

 

 
Interpolation function 
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Step 6: Piecewise constant interpolation 

Piecewise constant interpolation is the simplest way to interpolate data. It 

consists on locating the nearest data value and assigning the same value 

to the unknown point. 

 

 
 

 
Piecewise constant interpolation 

 
 

Step 7: Piecewise constant interpolation in Scilab 

The Scilab command used to perform piecewise interpolation is 

"interp1" where the third argument is "nearest". The fourth argument 

specifies if an extrapolation method should be used when the evaluation 

points are outside the interval of the interpolation points. 

 
// Interpolation 

// Evaluation points 

xval = linspace(-6,6,101)'; 

 

xx_c = xval; 

yy_c = interp1(xi,yi,xx_c,'nearest','extrap'); 

 

// Plot 

scf(3); 

clf(3); 

plot(xrunge,yrunge,'k-'); 

plot(xx_c,yy_c,'b-'); 

plot(xi,yi,'or'); 

xlabel("x"); 

ylabel("y"); 

title("Piecewise interpolation"); 

legend(["Runge func";"Interp.";"Interp. val"]); 
 

 

 

 
Piecewise constant interpolation 
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Step 8: Piecewise linear interpolation 

Linear interpolation is a polynomial of degree 1 that connects two points,  

, and  the interpolant is given by 

 

 

 
 

 
Piecewise linear interpolation (green) and extrapolation (red) 

 

Step 9: Linear interpolation in Scilab 

The Scilab command used to perform linear interpolation is again 

"interp1" but now the third argument is "linear". We can note that the 

code is similar to the previous one for piecewise interpolation. 

 
// Interpolation 

xx_l = xval; 

yy_l = interp1(xi,yi,xx_c,'linear','extrap'); 

 

// Plot 

scf(4); 

clf(4); 

plot(xrunge,yrunge,'k-'); 

plot(xx_l,yy_l,'b-'); 

plot(xi,yi,'or'); 

xlabel("x"); 

ylabel("y"); 

title("Linear interpolation"); 

legend(["Runge func";"Interp.";"Interp. val"]); 

  

  

 
Piecewise linear interpolation 
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Step 10: Polynomial interpolation 

Given a set of  data points , where all  are different, we find 

the polynomial of degree  which exactly passes through these points. 

Polynomial interpolations may exhibits oscillatory effects at the end of the 

points. This is known as Runge phenomenon. For example, the Runge 

function has this phenomenon in the interval [-5,+5] while in the interval [-

1,1] this effect is not present. 

 

 
Polynomial interpolation 

 

Step 11: Polynomial interpolation in Scilab 

The Scilab command used to perform polynomial interpolation is 

"polyfit" which is included in the zip file (see references). The syntax 

requires the interpolation points  and the degree of the polynomial 

interpolation which is equal to the number of point minus one. 

Note that the command "horner" evaluates a polynomial in a given set of 

data. 

// Import function 

exec("polyfit.sci",-1); 

// Interpolation 

xx_p = xval; 

[Pn] = polyfit(xi, yi, length(xi)-1); 

yy_p = horner(Pn,xx_p); 

 

// Plot 

scf(5); 

clf(5); 

plot(xrunge,yrunge,'k-'); 

plot(xx_p,yy_p,'b-'); 

plot(xi,yi,'or'); 

xlabel("x"); 

ylabel("y"); 

title("Polynomial interpolation"); 

legend(["Runge func";"Interp.";"Interp. val"]); 
 

 

 

 
Polynomial interpolation 
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Step 12: Cubic spline interpolation 

Cubic spline interpolation uses cubic polynomials on each interval. Then 

each polynomial is connected to the next imposing further continuity 

equations for the first and second derivatives. 

Several kinds of splines are available and depend on how degrees of 

freedom are treated. The most well-known splines are: natural, periodic, 

not-a-knot and clamped. 

 

 
Spline interpolation 

 

Step 13: Cubic spline in Scilab 

The Scilab command used to perform cubic spline interpolation is 

"splin". Several types of splines exist and can be specified by setting the 

third argument of the function. The evaluation of the spline is done using 

the command "interp" where it is possible to specify the extrapolation 

strategy. 

// Splines examples 

d = splin(xi, yi,"not_a_knot"); 

// d = splin(xi, yi,"natural"); 

// d = splin(xi, yi,"periodic"); 

 

xx_s = xval; 

yy_s = interp(xx_s, xi, yi, d, "linear"); 

 

// Plot 

scf(6); 

clf(6); 

plot(xrunge,yrunge,'k-'); 

plot(xx_s,yy_s,'b-'); 

plot(xi,yi,'or'); 

xlabel("x"); 

ylabel("y"); 

title("Spline interpolation"); 

legend(["Runge func";"Interp.";"Interp. val"]); 
 

 

 

 
Cubic spline interpolation with linear extrapolation 
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Step 14: Radial Basis Interpolation (RBF) 

Radial basis function modeling consists of writing the interpolation function 

as a linear combination of  basis functions  that depends only on the 

distance  of the interpolation points . This is equal to: 

 

Using the interpolation conditions  we have to solve the 

following linear system 

 

where the element . 

 

 Many radial basis functions exist, the most famous are: 

 Gaussian: 

 

 Multiquadratic: 

 

 Inverse multiquadratic: 

 

 Thin plate spline: 

 

Step 15: Gaussian RBF in Scilab 

In our example we use the Gaussian RBF. 

 
// Gaussian RBF 

deff('[y]=rbf_gauss(r,sigma)','y = exp(-r.^2 ./(2*sigma))');  

 

// Plot 

scf(7); 

clf(7); 

r = linspace(0,3); 

y1 = rbf_gauss(r,0.1); 

y2 = rbf_gauss(r,1.0); 

y3 = rbf_gauss(r,2.0); 

plot(r,y1,'k-'); 

plot(r,y2,'b-'); 

plot(r,y3,'r-'); 

xlabel("$r$"); 

ylabel("$\phi(r)$"); 

title("Gaussian rbf"); 

legend(["$\sigma = 0.1$";"$\sigma = 1.0$";"$\sigma = 2.0$"]); 
 

 
 

 
Gaussian RBF for different value of sigma 
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Step 16: RBF in Scilab 

On the right we report the optimal Gaussian RBF obtained for the 

interpolation of the Runge function where we have optimized the  

parameters. The full code is reported in the Openeering web site. 

 

Generally, each radial basis function depends on a parameter and this 

parameter is known as modeling parameter. This parameter has effect on 

the oscillation behavior of the function and the optimal choice is not an 

easy task. Many techniques are available for finding the best modeling 

parameter, the most famous is probably the “leave one out”. 

The leave-one-out cross-validation (LOOCV) consists in using a single 

point from the original set of data as a validation data. The validation of 

the model is given by that point. This process can be repeated for all the 

points in the data set such that, in the end, all the points are used once as 

validation point. This method can produce a mean value of all these leave-

one-out errors and gives a global estimate of the model. 

Since a value that estimates the model is available, we can use an 

optimization solver for finding the best parameter in order to minimize the 

error of the model. 

 

 

 
 

 
Behaviour of the error versus sigma 

 

 
Optimal RBF with  (left), non optimal solution  (right) 
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Step 17: Approximation or curve fitting 

When data is affected by errors, polynomial interpolation cannot be 

appropriate since the approximation function is constrained to be through 

the interpolation points. So it makes sense to fit the data starting from a 

given class of functions and minimizing the difference between the data 

and the class of functions, i.e. 

 

 

The "polyfit" function computes the best least square polynomial 

approximation of data. If we choose  in the "polyfit" function, we 

approximate data with linear function of the form , i.e. we 

compute the linear least squares fitting. 

 

 
Schematic example of min interpretation 

 

Step 18: 1D approximation 

In this example we add noise to the function  and then we 

make polynomial approximation of order 1 and 2. 

The critical code is reported here (only case 1): 

np = 100; noise = 0.7*(rand(np,1)-0.5); 

x = linspace(0,2,np)'; 

yexact = x.^2 + x; 

ynoise = yexact + noise; 

 

// degree 1 approximation 

p1 = polyfit(x, ynoise, 1); 

p1val = horner(p1,x); 

scf(10); clf(10); 

plot(x,yexact,'k-'); plot(x,ynoise,'b-'); plot(x,p1val,'r-'); 

For details download the zip file with the source codes. 

 
 

 
Comparison of best fitting for degree 1 and 2 
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Step 19: 2D approximation 

In this example we want to approximate scattered data with a linear least 

square fitting in two dimensions. 

Given the polynomial approximation  and the  

scattered interpolation points , the optimal computation of the 

unknown parameters  requires to solve the following 

overdetermined linear system 

 

The matrix is known as the Vandermonde matrix and arises in polynomial 

interpolation. The i-th row of the matrix corresponds to the polynomial 

evaluated at point i-th. In our case, the i-th row corresponds to: 

 

This is done using the Singular Value Decomposition (SVD) or 

equivalently using the backslash command. Here, we report only the 

solution stage. The full code can be downloaded from our web page. 

// Generating random points along a plane 

np = 30; 

noise = 0.5*(rand(np,1)-0.5); 

 

// Extract data 

x = rand(np,1); 

y = rand(np,1); 

znoise = -x+2*y+noise; 

 

// Vandermonde matrix for P(x,y) = a+b*x+c*y 

V = [ones(np,1),x,y]; 

// Find coefficient i.e. minimize error norm 

coeff = V\znoise; 

  

 
 
 
 
 
 
 
 

 
Example of least square approximation in 2D 
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Step 20: nD linear approximation 

The previous example can be easily extended to an n-dimensional 

problem, i.e. we search for an approximation of the form 

. 

Here, we report the code for the problem where some coefficients may be 

equal to zero and could be deleted from the estimation problem. 

 

The idea here implemented consists of the following strategy: 

1. Perform least square approximation of data; 

2. Find the zero coefficients with some pre-fixed tolerance; 

3. Re-perform least square approximation of the reduce problem 

where we have deleted the columns of the Vandermonde matrix 

corresponding to the zero coefficients. 

 

The code reported on the right estimates these coefficients. The full code 

can be downloaded from our website. 

 

 

  

n = 10;         // Problem dimensions 

neval = 100;    // Number of evaluation points 

pcoeff = 1:n+1; // Problem coefficient ([a0, a1, ..., an]) 

pcoeff([2,5,8]) = 0; // Some zero coefficients 

 

// Evaluation points 

[xdata,ydata] = generatedata(pcoeff, n, neval); 

 

// Estimate coefficients 

pstar = estimatecoeff(xdata, ydata); 

 

// Find "zero" coefficient (define tolerance) 

tol = 0.1; 

zeroindex = find(abs(pstar)<=tol); 

 

// re-estimate coefficients 

pzero = estimatecoeffzero(xdata, ydata, zeroindex); 

The code use the following functions: 

 y=evaldata(pcoeff,x) 

that evaluates the polynomial  defined by coefficients 

 on point  adding a uniform 

noise on the definition of the coefficients; 

 [xdata,ydata]=generatedata(pcoeff,n,neval) 

that generates the evaluation points and their values; 

 pstar=estimatecoeff(xdata,ydata) 

that estimates the polynomial coefficients using the least square 

method; 

 pzero=estimatecoeffzero(xdata,ydata,zeroindex) 

that estimates the polynomial coefficients where some coefficients, 

specified by the vector zeroindex , are equal to zero. 
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Step 21: Another polyfit function 

The numerical solution of the polynomial interpolation problem requires to 

solve the linear system with the Vandermonde matrix. Numerically, this 

problem is ill-conditioned and requires an efficient strategy for a “correct” 

solution. This is performed by using, for example, QR factorization.  

The function “polyfit_fulldemo.sce”, provided by Konrad Kmieciak, 

and contained in the zip file, is an alternative to the polyfit function. 

 

 
 

function [u]=polyfit(x, y, n) 

      // Vandermonde 

      for k=n:-1:0 

          if k==n then w=0; 

          end 

          w=w+1; 

          Xu(:,w)=[x.^k];  

      end 

 

      // QR 

      [q r k]=qr(Xu,'0'); 

      s = inv(r) * (q' * y); // s = r \ (q' * y)  

      for o=1:length(s) 

          u(find(k(:,o)>0))=s(o); 

      end 

endfunction 

 
 

Step 22: Industrial applications of data fitting 

Interpolation and approximation are two major techniques for constructing 

mathematical models. Mathematical models can substitute complex model 

in real-case applications.  

When the original model is complex, or when it requires long and costly 

evaluations (for example with finite element analysis – FEA), a simplified 

model of the original model is required.  

The model of the model is often called metamodel (a.k.a. response 

surfaces) and the metamodeling technique is widely used in industrial 

applications. 

 

In real-case applications, when optimizing product or services, we need to 

evaluate several times the model. This means that having a metamodel 

that can be evaluated faster is, most of the time, the only way for finding 

optimal solutions. 

 

 

Metamodeling 
+ 

Response surface 
+ 

Self-Organizing Maps 
+ 

Neural Networks 
= 

Industrial applications 
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Step 23: Exercise on exponential decay 

As an exercise, try to estimate the coefficient of a decay function of the 

form: 

 

using a linear least square fitting of data. 

 

 

 

Hits: Use a logarithmic change of variable to reduce the problem in the 

following form 

 

 

 

 

 

 
Exponential decay fitting of data 

 

Step 24: Concluding remarks and References 

In this Scilab tutorial we have shown how to apply data fitting in Scilab 

starting from piece-wise interpolation, presenting polynomial fitting and 

cubic spline, and ending up with radial basis functions (RBF). 

 

In the case of polynomial interpolation we used the function "polyfit" 

which can be downloaded from the Scilab webpage and is included in the 

provided source codes. 

  

1. Scilab Web Page: Available: www.scilab.org. 

2. Openeering: www.openeering.com. 

3. Javier I. Carrero is the author of the polyfit function. The original 

code is available on the Scilab.org web pages and is included in the 

zip file. 

http://www.scilab.org/
http://www.openeering.com/


 

Data Fitting  www.openeering.com page 16/16 

Step 25: Software content 

To report bugs or suggest improvements please contact the Openeering 

team.  We thank Konrad Kmieciak for reporting us a new version of the 

polyfit function. 

www.openeering.com 

 

 

 

 

Thank you for your attention, 

Manolo Venturin 
 Silvia Poles 

 

 

 
 

 

-------------- 

Main directory 

-------------- 

ex0.sce   : Plotting of the first figure 

ex1.sce   : Solution of exercise 1 

interpolation.sce  : Interpolation examples codes 

polyfit.sci  : Polyfit function 

polyfit_manual.pdf  : Polyfit manual 

polyfit_fulldemo.sce : Another version of polyfit 

estimate_lincoeff.sce : Estimantion of nD linear model 

license.txt  : The license file 
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