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Introduction

The aim is to develop a toolbox where Radial Basis Functions are used in the
scattered data interpolation problem. In this toolbox we construct an ap-
proximation function which is a linear combination of shifted RBFs. We have
shaped our toolbox to be a powerful instrument to analyze data sets coming
both from real life applications and industry. The main advantage of using
RBFs is that this class is very large, allowing to model various situations.
Nevertheless, there exists a general theory that ensures high tractability of
RBFs models. Furthermore, there is emprical evidence that such models give
good predictions even with little data. We have chosen Scilab with a dou-
ble motivation. The first one is that it is an advanced and robust language
that guarantees robustness and quick prototyping. In addition, it is an open
source software, making our work available for free to any member of the
community and industry partners.
This software allows to create an interpolation model based on scattered data
from a physical or computer experiment. Here, an experiment is a collection
of pairs of input and respective evaluation values. The input is likely to be
high dimensional, whereas the measurements have to be scalars.
Computation with high dimensional data is an important issue in many areas
of science and engineering. Many traditional numerical methods can either
not handle such problems at all, or are limited to very regular situations.
Moreover, the independence of meshfree discretizations from a mesh (they
are based only on a set of independent points) permits to eliminate the costs
of mesh generation, that is still the most time consuming part of any mesh-
based numerical simulation.

Chapter 1 contains a description of the Scilab software, in Chapter 2
we give the theory about the RBFs and the RBF interpolation method.
Chapter 3 discusses the implementation details and in Chapter 4 we present
an example based on real data. Chapter 5 is a reference manual for the
developed toolbox.
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Chapter 1

Scilab

Scilab is an open source, cross-platform numerical computational package as
well as a high-level, numerically oriented programming language. Scilab was
written by INRIA, the French National Research Institution, in 1990. The
web page for Scilab is www.scilab.org.
Scilab is usually compared to MATLAB R© because their syntax and function-
alities are very similar, and it is considered its Open Source clone. MATLAB R©
is a registered trademark of The MathWorks, Inc.
The use of Open Source software offers to companies, that already use com-
mercial equivalent products, the chance of significant savings on purchases
and renewals of licenses. In Figure 1.1 an example of return on investment is
shown. The high initial cost is due to the migration cost and to the software
training cost, while starting from the second year the annual total cost is
much lower than the total cost of a commercial competitor software.
Scilab differs from other products in the market (e.g. GNU Octave, Max-

ima, FreeMat) because of its maturity: it has a really advanced plotting sys-
tem and also includes Xcos, developed with the same idea of MATLAB R©’s
Simulink, which allows to model and simulate hybrid dynamical systems,
such as mechanical, hydraulic, and/or electronic systems. Moreover, Scilab
allows for an immediate translation of MATLAB R© code.
While the improvement of GNU Octave is left to the users, actually Scilab’s
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6 CHAPTER 1. SCILAB

Figure 1.1: Open source software return on investment.

development and maintenance are carefully managed and controlled by the
Scilab Consortium, a powerful ecosystem gathering 22 international Consor-
tium members, which includes both industrial and academic members, like
PSA Peugeot Citroën and École Polytechnique ParisTech.
Scilab is a European product with six new releases per year and the Scilab
Consortium is currently involved in 9 Research and Development projects.
Furthermore, an annual user conference is organized, ScilabTec.
For a comparison between Scilab and some of the most used scientific soft-
ware, as MATLAB R©, GNU Octave and FreeMat, we refer to [7].

My personal experience with Scilab
During my studies I took some courses in numerical methods where I learnt
programming in MATLAB R©. My knowledge was immediately transferable
to Scilab and I could start coding with little additional effort.
Nevertheless, one has to be careful while using commands having the same
name in both software, since the interpretation of the input could be slightly
different.



Chapter 2

Radial Basis Functions
Interpolation

2.1 The scattered data interpolation in Rs

We are trying to find a function Pf which is a “good” fit to the given set
of data (measurements and locations at which these measurements were ob-
tained) and gives us a rule which allows us to deduce information about
the process we are studying also at locations different from those in which
we obtained our measurements. We want the function Pf to exactly fit the
given measurements at the corresponding locations. If the locations in which
the measurements are taken do not lie on a uniform or regular grid, then
this approach is called scattered data interpolation. To give a precise defini-
tion we assume that the measurement locations (or data sites) are labelled
xj, j = 1, . . . , N , and the corresponding measurements (or data values) are
called yj. We will use X to denote the set of data sites and assume that
X ⊂ Ω for some region Ω in Rs, and restrict the discussion to scalar-valued
data, i.e., yj ∈ R. We are now ready for a precise formulation of the scattered
data interpolation problem.

Problem 2.1.1 (Scattered data interpolation) Given data (xj, yj), j =
1, . . . , N , with xj ∈ Rs and yj ∈ R, find a (continuous) function Pf such that
Pf (xj) = yj, j = 1, . . . , N .

The fact that we allow xj to lie in an arbitrary s−dimensional space Rs

means that the formulation of Problem 2.1.1 allows us to cover many differ-
ent types of applications.
A convenient and common approach to solving the scattered data interpo-
lation problem is to make the assumption that the function Pf is a linear

7



8 CHAPTER 2. RADIAL BASIS FUNCTIONS INTERPOLATION

combination of certain basis functions Bk, i.e.,

Pf (x) =
N∑
k=1

ckBk(x), x ∈ Rs (2.1)

Solving the interpolation problem under this assumption leads to a system
of linear equations of the form

Ac = y

where the entries of the interpolation matrix A are given byAjk = Bk(xj), j, k =
1, . . . , N, c = [c1, . . . , cN ]T , and y = [y1, . . . , yN ]T .
Problem 2.1.1 will be well posed, i.e., a solution to the problem will exist and
be unique, if and only if the matrix A is non-singular.
In the univariate setting it is well known that one can interpolate to arbitrary
data at N distinct data sites using a polynomial of degree N − 1. For the
multivariate setting, however, there is the following negative result due to
Mairhuber and Curtis:

Theorem 2.1.2 (Mairhuber-Curtis) If Ω ⊂ Rs , s ≥ 2, contains an
interior point, then there exist no Haar spaces of continuous functions except
for one-dimensional ones.

In order to understand this theorem we need

Definition Let the linear finite-dimensional function space B ⊆ C(Ω) have
a basis {B1, . . . , BN}. Then B is a Haar space on Ω if

det(A) 6= 0

for any set of distinct x1, . . . ,xN in Ω. Here A is the matrix with entries
Ajk = Bk(xj).

Note that existence of a Haar space guarantees invertibility of the interpo-
lation matrix A, i.e., existence and uniqueness of an interpolant to data
specified at x1, . . . ,xN , from the space B. As mentioned above, univariate
polynomials of degree N − 1 form an N−dimensional Haar space for data
given at x1, . . . ,xN .
The Mairhuber-Curtis Theorem tells us that if we want to have a well-posed
multivariate scattered data interpolation problem, we can no longer fix in ad-
vance the set of basis functions we plan to use for interpolation of arbitrary
scattered data. For example, it is not possible to perform unique interpola-
tion with (multivariate) polynomials of degree N to data given at arbitrary
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locations in R2. Instead, the basis should depend on the data locations. The
simplest example of basic function consists of the shifts of the Euclidean
distance between the data sites in Rs. In other words, we can construct a
univariate piecewise linear spline interpolant of a function f by assuming Pf
is of the form

Pf (x) =
N∑
k=1

ck ‖ x− xk ‖2, x ∈ Rs

and then determine the coefficients ck by solving the linear system
‖ x1 − x1 ‖2 ‖ x1 − x2 ‖2 . . . ‖ x1 − xN ‖2
‖ x2 − x1 ‖2 ‖ x2 − x2 ‖2 . . . ‖ x2 − xN ‖2

...
...

. . .
...

‖ xN − x1 ‖2 ‖ xN − x2 ‖2 . . . ‖ xN − xN ‖2




c1
c2
...
cN

 =


f(x1)
f(x2)

...
f(xN)


Clearly, the basis functions Bk =‖·−xk ‖2 are dependent on the data sites
as suggested by the Mairhuber-Curtis theorem. The points xk to which the
basic function B(x) =‖ x ‖2 is shifted are usually referred to as centers.
While there may be circumstances that suggest choosing these centers differ-
ent from the data sites one generally picks the centers to coincide with the
data sites. This simplifies the analysis of the method, and is sufficient for
many applications. Since the functions Bk are (radially) symmetric about
their centers xk this constitutes the first example of radial basis functions.
The matrix above is an example of a distance matrix. It is known that the
distance matrix based on the Euclidean distance between a set of distinct
points in Rs is always non-singular (Courant-Fisher), therefore, we can solve
the scattered data interpolation problem.
Here we present an essential routine of our toolbox, it is called DistanceMatrix.sci

and we use it to compute the matrix of pairwise Euclidean distances of two
(possibly different) sets of points in Rs. In the code these two sets are de-
noted by dsites and ctrs. In our examples both of these sets will coincide
with the set X of data sites.

// DM = DistanceMatrix(dsites,ctrs)

// Forms the distance matrix of two sets of points in R^s,

// i.e., DM(i,j) = || datasite_i - center_j ||_2.

// Input

// dsites: Mxs matrix representing a set of M data sites in R^s

// (i.e., each row contains one s-dimensional point)

// ctrs: Nxs matrix representing a set of N centers in R^s

// (one center per row)

// Output
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// DM: MxN matrix whose i,j position contains the Euclidean

// distance between the i-th data site and j-th center

function DM = DistanceMatrix(dsites,ctrs)

[M,s] = size(dsites); [N,sc] = size(ctrs);

if s ~= sc then

error(’dsites and ctrs must have the same number of columns’);

end

DM = zeros(M,N);

// Accumulate sum of squares of coordinate differences

for d = 1:s

DM = DM + (ones(1,N).*.dsites(:,d)-ones(M,1).*.ctrs(:,d)’).^2;

end

DM = sqrt(DM);

endfunction

2.2 Radial (basis) functions

The use of the Euclidean distance matrices to compute a solution to the
scattered data interpolation problem is quite natural, but it holds some limi-
tations, as a limited accuracy and limited smoothness. We can maintain the
underlying structure presented by the distance matrix approach and address
these limitations by composing the distance function with certain “good”
univariate functions. Radial functions have the nice property that they are
invariant under all Euclidean transformations (i.e., translations, rotations,
and reflections). By this we mean that it does not matter whether we first
compute the RBF interpolant and then apply an Euclidean transformation,
or if we first transform the data and then compute the interpolant. This
is an immediate consequence of the fact that Euclidean transformations are
characterized by orthogonal transformation matrices and are therefore norm-
invariant. Invariance under translation, rotation and reflection is often de-
sirable in applications. Moreover, the application of radial functions to the
solution of the scattered data interpolation problem benefits from the fact
that the interpolation problem becomes insensitive to the dimension s of the
space in which the data sites lie. Instead of having to deal with a multivariate
function Φ (whose complexity will increase with increasing space dimension
s) we can work with the same univariate function ϕ for all choices of s. We
therefore define

Definition A function Φ : Rs → R is called radial provided there exists a
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univariate function ϕ : [0,∞)→ R such that

Φ(x) = ϕ(r), where r =‖ x ‖,

and ‖· ‖ is some norm on Rs, usually the Euclidean norm.

Such a definition says that for a radial function Φ

‖ x1 ‖=‖ x2 ‖ =⇒ Φ(x1) = Φ(x2), x1, x2 ∈ Rs

In other words, the value of Φ at any point at a certain fixed distance from
the origin (or any othe fixed center point) is constant. Thus, Φ is radially (or
spherically) symmetric about its center. Furthermore, the definition shows
that the Euclidian distance function we took as example of basic function
in the previous subsection is just a special case of a radial basis function.
Namely, with ϕ(r) = r.
Coming back to the scattered data interpolation problem, we now use a radial
basis function expansion to solve it in Rs by assuming

Pf (x) =
N∑
k=1

ckϕ (‖ x− xk ‖2) , x ∈ Rs.

The coefficients ck are found by enforcing the interpolation conditions, and
thus solving the linear system


ϕ(‖ x1 − x1 ‖2) ϕ(‖ x1 − x2 ‖2) . . . ϕ(‖ x1 − xN ‖2)
ϕ(‖ x2 − x1 ‖2) ϕ(‖ x2 − x2 ‖2) . . . ϕ(‖ x2 − xN ‖2)

...
...

. . .
...

ϕ(‖ xN − x1 ‖2) ϕ(‖ xN − x2 ‖2) . . . ϕ(‖ xN − xN ‖2)




c1
c2
...
cN

 =


f(x1)
f(x2)

...
f(xN )


As the solution of the scattered data interpolation problem hinges entirely on
the solution of this system of linear equations, the most important question
we have to answer is: for what type of basic functions ϕ is the system matrix
non-singular? We will consider this problem in the next sections of this
chapter.

2.3 Positive definite RBFs

Let A the matrix with entries ϕ(‖ xj − xk ‖2), j, k = 1, . . . , N . Our goal is
to solve the linear system

Ac = y

choosing ϕ such that A results non-singular, and consequently obtain a
unique solution. While no one has yet succeeded in characterizing the class
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of all basic functions ϕ that generate a non-singular system matrix for any
set X = {x1, . . . ,xN} of distinct data sites, the situation is much better if
we consider positive definite matrices.

Definition A real symmetric matrix A is called positive semi-definite if its
associated quadratic form is non-negative, i.e.,

N∑
j=1

N∑
k=1

cjckAjk ≥ 0

for c = [c1, . . . , cN ]T ∈ RN .
If the quadratic form is zero only for c ≡ 0, then A is called positive definite.

An important property of positive definite matrices is that all their eigenval-
ues are positive, and therefore a positive definite matrix is non-singular (but
certainly not vice versa).
If we therefore had basis functions Bk in the expansion (2.1) above which
generate a positive definite interpolation matrix, we would always have a
well-posed interpolation problem. To this end we introduce the concept of a
positive definite function from classical analysis.

Definition A complex-valued continuous function Φ : Rs → C is called
positive definite on Rs if

N∑
j=1

N∑
k=1

cj c̄kΦ(xj − xk) ≥ 0

for any N pairwise different points x1, . . . ,xN ∈ Rs and c = [c1, . . . , cN ]T ∈
CN .
The function Φ is called strictly positive definite on Rs if the quadratic form
is zero only for c ≡ 0.

The left hand side of the inequality is real thanks to Property 3 that we will
give in the following.
Some basic properties of positive definite functions are:

1. Non-negative finite linear combinations of positive definite functions
are positive definite. If Φ1, . . . ,Φn are positive definite on Rs and cj ≥
0, j = 1, . . . , n, then

Φ(x) =
n∑
j=1

cjΦj(x), x ∈ Rs,
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is also positive definite. Moreover, if at least one of the Φj is strictly
positive definite and the corresponding cj > 0, then Φ is strictly positive
definite.

2. Φ(0) ≥ 0.

3. Φ(−x) = ¯Φ(x).

4. Any positive definite function is bounded. In fact

|Φ(x)| ≤ Φ(0).

5. If Φ is positive definite with Φ(0) = 0, then Φ ≡ 0.

6. The product of (strictly) positive definite functions is (strictly) positive
definite.

The integral characterizations of definite positive functions and their exten-
sions to strictly positive definite and strictly completely/multiply monotone
functions are essential to the application of the theory to the scattered data
interpolation problem:

Theorem 2.3.1 (Bochner) A (complex-valued) function Φ ∈ C(Rs) is pos-
itive definite in Rs if and only if it is the Fourier transfom of a finite non-
negative Borel measure µ on Rs, i.e.

Φ(x) = µ̂(x) =
1√

(2π)s

∫
Rs

e−ix·ydµ(y), x ∈ Rs.

Proof We will prove only the direction that is important for the application
to scattered data interpolation. We assume Φ is the Fourier transform of a
finite non-negative Borel measure and show that Φ is positive definite. Thus,

N∑
j=1

N∑
k=1

cj c̄kΦ(xj − xk) =
1√

(2π)s

N∑
j=1

N∑
k=1

[
cj c̄k

∫
Rs

e−i(xj−xk)·ydµ(y)

]

=
1√

(2π)s

∫
Rs

[
N∑
j=1

cje
−ixj ·y

N∑
k=1

c̄ke
ixk·y

]
dµ(y)

=
1√

(2π)s

∫
Rs

∣∣∣∣∣
N∑
j=1

cje
−ixj ·y

∣∣∣∣∣
2

dµ(y)

≥ 0.

The last inequality holds because of the conditions imposed on the measure
µ. �
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In order to accomplish our goal to guarantee a well-posed interpolation prob-
lem we have to extend Bochner’s theorem to strictly positive definite func-
tions and we need the notion of carrier of a (non-negative) Borel measure
defined on some topological space X, given by

X r
⋃
{O : O is open and µ(O) = 0}.

A sufficient condition for a function to be strictly positive definite is:

Theorem 2.3.2 Let µ be a non-negative finite Borel measure on Rs whose
carrier is a set of nonzero Lebesgue measure. Then the Fourier transform of
µ is strictly positive definite on Rs.

A criterion to check whether a given function is strictly positive definite is
given in the following

Theorem 2.3.3 Let Φ be a continuous function in L1(Rs). Φ is strictly
positive definite if and only if Φ is bounded and its Fourier transform is
non-negative and not identically equal to zero.

This theorem is of fundamental importance because it shows that – if Φ 6= 0
(which implies that then also Φ̂ 6= 0) – we need to ensure only that Φ̂ be
non-negative in order for Φ to be strictly positive definite.
We now turn our attention to (strictly) positive definite radial functions.
When we are dealing with radial functions, i.e., Φ(x) = ϕ(‖x‖), then it
will be convenient to also refer to the univariate function ϕ as a (strictly)
positive definite radial function. An immediate consequence of this notational
convention is

Lemma 2.3.4 If Φ = ϕ(‖· ‖) is (strictly) positive definite and radial on Rs,
then Φ is also (strictly) positive definite and radial on Rσ for any σ ≤ s.

In order to give the next result we define the Bessel function of the first kind
of order p:

Jp(x) =
2(2/x)p√

(x)Γ(1/2− x)

∫ ∞
1

sin(xt)

(t2 − 1)p+1/2
dt

Now we can give the integral characterizations of this kind of functions, due
to Shoenberg:

Theorem 2.3.5 A continuous function ϕ : [0,∞) → R is positive definite
and radial on Rs if and only if it is the Bessel transform of a finite non-
negative Borel measure µ on [0,∞), i.e.

ϕ(r) =

∫ ∞
0

Ωs(rt)dµ(t),
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where

Ωs(r) =

{
cos r for s = 1,

Γ
(
s
2

) (
2
r

)(s−2)/2
J(s−2)/2(r) for s ≥ 2,

and J(s−2)/2 is the classical Bessel function of the first kind of order (s−2)/2.

Theorem 2.3.6 (Shoenberg) A continuous function ϕ : [0,∞) → R is
strictly positive definite and radial on Rs for all s if and only if it is of the
form

ϕ(r) =

∫ ∞
0

e−r
2t2dµ(t),

where µ is a finite non-negative Borel measure on [0,∞) not concentrated at
the origin.

The Shoenenberg characterization of (strictly) positive definite radial func-
tions on Rs for all s implies that we have a finite non-negative Borel measure
µ on [0,∞) such that

ϕ(r) =

∫ ∞
0

e−r
2t2dµ(t).

If we want to find a zero r0 of ϕ then we have to solve

ϕ(r0) =

∫ ∞
0

e−r
2
0t

2

dµ(t) = 0.

Since the exponential function is positive and the measure is non-negative, it
follows that µ must be the zero measure. However, then ϕ is identically equal
to zero. Therefore, a non-trivial function ϕ that is positive definite and radial
on Rs for all s can have no zeros. This has two important consequences:

• There are no oscillatory univariate continuous functions that are strictly
positive definite and radial on Rs for all s.

• There are no compactly supported univariate continuous functions that
are strictly positive definite and radial on Rs for all s.

2.3.1 Strictly Positive Definite RBFs of the toolbox

We now present a number of functions that are covered by the theory pre-
sented so far. It is possible to include a shape parameter ε for all the functions
presented below by rescaling x to εx. Our use of the shape parameter as a
factor applied directly to x has the advantage of providing a unified treat-
ment in which a decrease of the shape parameter always has the effect of
producing “flat” basis functions, while increasing ε leads to more peaked (or
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localized) basis functions.
The first strictly positive definite function we consider is well-represented in
many branches of mathematics: the Gaussian function. Because of its cru-
cial role we are going to show and examine its Fourier transform, while we
will just give the formulation and a way to construct the others. For the sake
of simplicity also the shape parameter will appear only in the first function.

1. Gaussians
We can now show that the Gaussian

Φ(x) = e−ε
2‖x‖2 , ε > 0,

is strictly positive definite (and radial) on Rs for any s. This is due
to the fact that the Fourier transform of ε Gaussian is essentially a
Gaussian. In fact,

Φ̂(x) =
1

(
√

2ε)s
e−

‖x‖2

4ε2

and this is positive independent of the space dimension s. In particular,
for ε = 1√

2
we have Φ̂ = Φ.

Another argument to show that Gaussians are strictly positive definite
and radial on Rs for any s that avoids dealing with Fourier transforms
will become available later. It will make use of completely monotone
functions.
Recall that Property 1. shows that any finite non-negative linear combi-
nation of (strictly) positive definite functions is again (strictly) positive
definite. Now, the Shoenberg characterization of this kind of functions
states that all such functions are given as infinite linear combinations of
Gaussians. Therefore, the Gaussians can be viewed as the fundamental
member of the family of functions that are strictly positive definite and
radial on Rs for all s.
In the toolbox one can pick this function by inserting the string gaussian

in the field “rbfunction”.
In Figure 2.1 a Gaussian RBF with shape parameter ε = 1 is shown.

2. Laguerre-Gaussians
In order to obtain a generalization of Gaussians we start with the gen-
eralized Laguerre polynomials L

s/2
n of degree n and order s/2 defined

by

Ls/2n (t) =
n∑
k=0

(−1)k

k!

(
n+ s/2

n− k

)
tk.
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Figure 2.1: Gaussian RBF with shape parameter ε = 1.

We then define the Laguerre-Gaussians

Φ(x) = e−‖x‖
2

Ls/2n (‖x‖2).

Since they are oscillatory functions we know that they can not be
strictly positive definite and radial on Rs for all s. In fact, in the
toolbox the functions linearLG (implemented with n = 1 and s = 2)
and quadraticLG (implemented with n = 2 and s = 2) will work only
in dimension 2.

3. Matérn Functions
The class of Matérn functions is quite common in the statistic litera-
ture:

Φ(x) =
Kβ− s

2
(‖x‖)‖x‖β− s

2

2β−1Γ(β)
, β >

s

2

where Kν is the modified Bessel function of the second kind of order ν.
This kind of functions are strictly positive definite on Rs for all s < 2β.
In the toolbox one can find the functions

- BasicMatern: β = s+1
2

, not differentiable at the origin

- LinearMatern: β = s+3
2

, C2 smooth

- QuadraticMatern: β = s+5
2

, C4 smooth

- CubicMatern: β = s+7
2

, C6 smooth
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4. Generalized Inverse Multiquadrics
The Henkel inversion theorem allows us to reverse the roles of Φ and
Φ̂ of the Matérn functions, generating the so-called generalized inverse
multiquadrics

Φ(x) = (1 + ‖x‖2)−β, β >
s

2
,

which are strictly positive definite on Rs for all s < 2β.
In the toolbox it is possible to use the functions

- generalizedIMQ: the “original” inverse multiquadric introduced
by Hardy and corresponds to the value β = 1/2

- IQ: the special choice β = 1 was referred to as inverse quadratic
in various papers of Fornberg and co-workers

- IMQ: the inverse multiquadric with β = 2

2.3.2 Completely Monotone and Multiply Monotone
Functions

Fourier transforms are not always easy to compute, thus we present two
alternative easier criteria that allow us to decide whether a function is strictly
positive definite and radial on Rs (one for the case of all s and one for only
limited choices of s). We begin with the former case. To this end we now
introduce a class of functions that is very closely related to positive definite
radial functions and leads to a simple characterization of such functions.

Definition A function ϕ : [0,∞) → R that is in C[0,∞) ∩ C∞(0,∞) and
satisfies

(−1)lϕ(l)(r) ≥ 0, r > 0, l = 0, 1, 2, . . .

is called completely monotone on [0,∞).

In order to see how such functions are related to positive definite radial
functions we require the following integral characterization.

Theorem 2.3.7 (Hausdorff-Bernstein-Widder) A function ϕ : [0,∞)→
R is completely monotone on [0,∞) if and only if it is the Laplace transform
of a finite non-negative Borel measure µ on [0,∞), i.e., ϕ is of the form

ϕ(r) = Lµ(r) =

∫ ∞
0

e−rtdµ(t).
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Theorem 2.3.7 shows that, in the spirit of our earlier remarks, the function
ϕ(r) = e−εr can be viewed as the fundamental completely monotone func-
tion.
The following connection between positive definite radial functions and com-
pletely monotone function was first pointed out by Shoenberg.

Theorem 2.3.8 A function ϕ is completely monotone on [0,∞) if and only
if Φ = ϕ(‖· ‖2) is positive definite and radial on Rs for all s.

Note that the function Φ is now defined via the square of the norm.
Also the following interpolation theorem originates in the work of Shoenberg
and provides a very simple test for verifying the well-posedness of many
scattered data interpolation problems.

Theorem 2.3.9 A function ϕ : [0,∞)→ R is completely monotone but not
constant if and only if ϕ(‖· ‖2) is strictly positive definite and radial on Rs

for all s.

We can also use monotonicity to test for strict positive definiteness of radial
functions on Rs for some fixed value of s. To this end we introduce the
concept of multiply monotone function.

Definition A function ϕ : [0,∞) → R which is in Ck−2(0,∞), k ≥ 2,
and for which (−1)lϕ(l)(r) is non-negative, non-increasing and convex for
l = 0, 1, 2, . . . , k− 2 is called k−times monotone on (0,∞). In case k = 1 we
only require ϕ ∈ C(0,∞) to be non-negative and non-increasing.

Since convexity of ϕ means that ϕ
(
r1+r2

2

)
≤ ϕ(r1)+ϕ(r2)

2
or simply ϕ′′(r) ≥ 0

if ϕ′′ exists, a multiply monotone function is in essence just a completely
monotone function whose monotonicity is “truncated”.
We need an integral representation of this class of function to make the
connection to strictly positive definite radial functions.

Theorem 2.3.10 (Williamson) A continuous function ϕ : [0,∞) → R is
k−times monotone on [0,∞) if and only if it is of the form

ϕ(r) =

∫ ∞
0

(1− rt)k−1+ dµ(t).

where µ is a non-negative Borel measure on [0,∞).

In the RBF literature the following interpolation theorem was stated by
Micchelli and refined by Buhmann.



20 CHAPTER 2. RADIAL BASIS FUNCTIONS INTERPOLATION

Theorem 2.3.11 (Micchelli) Let k = bs/2c + 2 be a positive integer. If
ϕ : [0,∞) → R, ϕ ∈ C[0,∞), is k−times monotone on (0,∞) but not
constant, then ϕ is strictly positive definite and radial on Rs for any s such
that bs/2c ≤ k − 2.

Note that in this case the square of the norm is missing.

2.4 Conditionally Positive Definite Functions

We have not yet the whole picture of radial functions for which the scattered
data interpolation problem has a unique solution. There exists a Fourier
transform characterization (and the relative easier theory based on monotone
functions) also for another class of functions that are not strictly positive
definite, namely the conditionally positive definite functions.

2.4.1 Scattered data interpolation with polynomial pre-
cision

It is not an easy matter to use polynomials to perform multivariate scattered
data interpolation. Only if the data sites are in certain special locations we
can guarantee well-posedness of multivariate polynomial interpolation.
The following definition guarantees a unique solution for interpolation to
give data at a subset of cardinality M =

(
m+s
m

)
of the points x1, . . .xN , by a

polynomial of degree m. Here M is the dimension of the linear space Πs
m of

polynomials of total degree less than or equal to m in s variables.

Definition We call a set of points X = {x1, . . .xN} ⊂ Rs m−unisolvent if
the only polynomial of total degree at most m interpolating zero data on X
is the zero polynomial.

For polynomial interpolation at N distinct data sites in Rs to be a well-posed
problem, the polynomial degree needs to be chosen accordingly, i.e., we need
M = N , and the data sites need to form a m−unisolvent set. This is rather
restrictive, however, even though we will be interested in interpolating N
pieces of data, the polynomial degree will be small (usually m = 1, 2, 3) and
the restrictions imposed on the locations of the data sites by the unisolvency
conditions will be rather mild.
We now want to modify the assumption on the form of the solution to the
scattered data interpolation Problem 2.1.1 by adding certain polynomials to
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the expansion, i.e., Pf is now assumed to be of the form

Pf (x) =
N∑
k=1

ckϕ(‖x− xk‖) +
M∑
l=1

dlpl(x), x ∈ Rs (2.2)

where p1, . . . , pM form a basis for the M =
(
m−1+s
m−1

)
−dimensional linear space

Πs
m−1 of polynomials of total degree less than or equal to m−1 in s variables.

Since enforcing the interpolation conditions Pf (xj) = f(xj), j = 1, . . . , N
leads to a system of N linear equations in the N + M unknowns ck and dl
one usually adds the M conditions

N∑
k=1

ckpl(xk) = 0, l = 1, . . . ,M,

to ensure a unique solution.
If the data come from a polynomial of total degree less than or equal to m−1,
then they are fitted exactly by the expansion 2.2.
In general, solving the interpolation problem based on the extended expan-
sion now amounts to solving a system of linear equations of the form(

A P
P T O

)(
c
d

)
=

(
y
O

)
(2.3)

where the pieces are given by Ajk = ϕ(‖xj − xk‖), j, k = 1, . . . , N, Pjl =
pl(xj), j,= 1, . . . , N, l = 1, . . . ,M, c = [c1, . . . , cN ]T , d = [d1, . . . , dM ]T , y =
[y1, . . . , yN ]T ,O is a zero vector of length M and O is an M×M zero matrix.
We now need to investigate whether the augmented system matrix in 2.3 is
non-singular. The special case m = 1 (in any space dimension s) is associ-
ated to the reproduction of constants and is covered by standard results from
linear algebra, so we discuss it first.

Definition A real symmetric matrix A is called conditionally positive semi-
definite of order one if its associated quadratic form is non-negative, i.e.

N∑
j=1

N∑
k=1

cjckAjk ≥ 0

for all c = [c1, . . . , cN ]T ∈ RN that satisfy

N∑
j=1

cj = 0.

If c 6= 0 implies strict inequality then A is called conditionally positive definite
of order one.
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Note that in order to have a symmetric distance matrix we need to take as
centers of the RBFs the same data sites.

Theorem 2.4.1 Let A be a real symmetric N ×N matrix conditionally pos-
itive definite of order one and let P = [1, . . . , 1]T be a N × 1 vector. Then
the system of linear equation 2.3 is uniquely solvable.

Proof Assume [c, d]T is a solution of the homogeneous linear system,i.e.,
with y = O. We show that [c, d]T = OT is the only possible solution.
By multiplying the top block of the (homogeneous) linear system by cT we
get

cTAc + cTPd = O.

From the bottom block of the system we know P Tc = cTP = 0, therefore

cTAc = 0.

Since the matrix A is conditionally positive definite of order one by assump-
tion, we get that c = O. Finally, the top block of the homogeneous linear
system under consideration states that

Ac + Pd = O,

so that c = O and the facts that P is a vector of ones and d a scalar imply
d = 0. �

Since any strictly positive definite radial function give rise to positive definite
matrices, and since positive definite matrices are also conditionally positive
definite of order one, the last theorem establishes the non-singularity of the
augmented RBF interpolation matrix for constant reproduction.
We now will investigate the case m > 1.

Definition A real-valued continuous even function Φ is called conditionally
positive definite of order m on Rs if

N∑
j=1

N∑
k=1

cjckΦ(xj − xk) ≥ 0

for any N pairwise distinct points {x1, . . .xN} ⊂ Rs, and c = [c1, . . . , cN ]T ∈
RN satisfying

N∑
j=1

cjp(xj) = 0,
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for any real-valued polynomial p of degree at most m− 1. The function Φ is
called strictly conditionally positive definite of order m on Rs if the quadratic
form is zero only for c ≡ O.

A really similar definition exists in the complex field, thus we can make two
useful observations:

• A function that is (strictly) conditionally positive definite of order m on
Rs is also (strictly) conditionally positive definite of any higher order.

• A (strictly) positive definite function is always (strictly) conditionally
positive definite of any order.

We can now generalize the interpolation Theorem 2.4.2 to the case of general
polynomial reproduction:

Theorem 2.4.2 If the real-valued even function Φ is strictly conditionally
positive definite of order m on Rs and the points x1, . . .xN form an (m −
1)−unisolvent set, then the system of linear equation 2.3 is uniquely solvable.

2.4.2 Conditionally Positive Definite RBFs of the tool-
box

We now present a number of strictly conditionally positive definite (radial)
functions, included some of the best known radial basic functions such as the
multiquadric due to Hardy and the thin plate spline due to Duchon.

• Generalized Multiquadrics

Φ(x) = (1 + ‖x‖2)β, x ∈ Rs, β ∈ R \ N0

are strictly conditionally positive definite of orderm = dβe (and higher).
For β < 0 we are back to the generalized inverse multiquadrics, strictly
conditionally positive definite of order m = 0, namely strictly positive
definite.
In the toolbox one can find

- MQ: the Hardy’s “original” multiquadric, with β = 1
2
, strictly con-

ditionally positive definite of order 1.

- generalizedMQ2: with β = 3
2
, strictly conditionally positive defi-

nite of order 2.

- generalizedMQ3: with β = 5
2
, strictly conditionally positive defi-

nite of order 3.
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As in our earlier discussion we can scale the basis functions with a
shape parameter ε by replacing ‖x‖ by |ε|‖x‖. This does not affect the
well-posedness of the interpolation problem.

• Radial Powers

Φ(x) = ‖x‖β, x ∈ Rs, 0 < β /∈ 2N,

are strictly conditionally positive definite of order m = dβ/2e (and
higher).
This shows that the basic function Φ(x) = ‖x‖2 used for the distance
matrix are strictly conditionally positive definite of order 1.
The radial powers present in the toolbox are:

- linear: with β = 1, strictly conditionally positive definite of
order 1.

- cubic: with β = 3, strictly conditionally positive definite of order
2.

- quintic: with β = 5, strictly conditionally positive definite of
order 3.

- septic: with β = 7, strictly conditionally positive definite of
order 4.

We had to exclude even powers because an even power combined with
the square root in the definition of Euclidean norm results in a poly-
nomial and we have already decided that polynomials cannot be used
for interpolation at arbitrarily scattered multivariate sites.
Radial powers are not affected by a scaling of their argument. In other
words, they are shape parameter free.

• Thin Plate Spline

Φ(x) = ‖x‖2β log ‖x‖, x ∈ Rs, β ∈ N,

are strictly conditionally positive definite of order m = β + 1.
The toolbox contains the functions:

- TPS: the “classical” thin plate spline with β = 1, strictly condi-
tionally positive definite of order 2.

- TPS2: with β = 2, strictly conditionally positive definite of order
3.
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As it happens with radial powers, the use of a shape parameter ε with
thin plate splines is pointless.

2.5 Compactly supported RBFs

In Section 2.3 we said that compactly supported radial functions can be
strictly positive definite on Rs only for a fixed maximal s− value. Therefore
we focus our attention on the characterization and construction of functions
that are compactly supported, strictly positive definite and radial on Rs for
some fixed s.
According to our earlier work, a function is strictly positive definite and radial
on Rs if its s−variate Fourier transform is non-negative. In [8] is shown that
the Fourier transform of the radial function Φ = ϕ(‖· ‖) can be written as
another radial function:

Φ̂(x) = Fsϕ(‖x‖) = ‖x‖−(s−2)/2
∫ ∞
0

ϕ(t)ts/2J(s−2)/2(t‖x‖)dt,

where Jν is the Bessel function of the first kind of order ν.
In the following we define an integral operator and its inverse differential op-
erator, and show how they facilitate the construction of compactly supported
radial functions.

Definition

1. Let ϕ be such that t 7→ tϕ(t) ∈ L1[0,∞). Then we define the integral
operator I via

(Iϕ)(r) =

∫ ∞
r

tϕ(t)dt, r ≥ 0.

2. For even ϕ ∈ C2(R) we define the differential operator D via

(Dϕ)(r) = −1

r
ϕ′(r), r ≥ 0.

The most important properties of these operators are

1. Both I and D preserve compact support, i.e., if ϕ has compact support,
then so do Iϕ and Dϕ.

2. If ϕ ∈ C(R) and t 7→ tϕ(t) ∈ L1[0,∞), then DIϕ = ϕ.
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3. If ϕ ∈ C2(R) (ϕ 6≡ 1) is even and ϕ′(t) ∈ L1[0,∞), then IDϕ = ϕ.

4. If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then Fs(ϕ) = Fs−2(Iϕ).

5. If ϕ ∈ C2(R) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then Fs(ϕ) =
Fs+2(Dϕ).

The operators I and D allow us to express s−variate Fourier transforms as
(s− 2)− or (s+ 2)−variate Fourier transforms, respectively. In particular, a
direct consequence of the above properties and the characterization of strictly
positive definite radial functions is

Theorem 2.5.1

1. Suppose ϕ ∈ C(R). If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then ϕ is
strictly positive definite and radial on Rs if and only if Iϕ is strictly
positive definite and radial on Rs−2.

2. If ϕ ∈ C2(R) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then ϕ is strictly
positive definite and radial on Rs if and only if Dϕ is strictly positive
definite and radial on Rs+2.

This allows us to construct new strictly positive definite radial functions from
given ones by a “dimension-walk” technique that steps through multivariate
Euclidean space in even increments.

2.5.1 Compactly Supported RBFs of the toolbox

The following classes of functions illustrate the above mentioned technique.

1. Wendland’s RBFs
Wendland starts with the truncated power function

ϕl(r) = (1− r)l+

which is strictly positive definite and radial on Rs for l ≥ bs/2c+1, and
then he walks through dimensions repeatedly applying the operator I:

ϕs,k = Ikϕbs/2c+k+1.

These new functions are supported in [0, 1] and have a polynomial
representation there. More precisely,
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Theorem 2.5.2 The functions ϕs,k are strictly positive definite and
radial on Rs and are of the form

ϕs,k =

{
ps,k(r), r ∈ [0, 1]

0, r > 1

with a univariate polynomial ps,k of degree bs/2c + 3k + 1. Moreover,
ϕs,k ∈ C2k(R) are unique up to a constant factor, and the polynomial
degree is minimal for given space dimension s and smoothness 2k.

The toolbox is provided with Wendland’s functions with s = 3, which
are strictly positive definite and radial on Rs for s ≤ 3, and k =
10, 1, 2, 3:

- Wendland30: of class C0.

- Wendland31: of class C2.

- Wendland32: of class C4.

- Wendland33: of class C6.

2. Wu’s RBFs
Wu constructs his functions starting with the functions

ψ(r) = (1− r2)l+, l ∈ N,

which in itself is not positive definite, and then he uses the convolution
creating

ψl(r) = (ψ ∗ ψ)(2r)

=

∫ ∞
−∞

(1− t2)l+(1− (2r − t)2)l+dt

=

∫ 1

−1
(1− t2)l(1− (2r − t)2)l+dt

This function is strictly positive definite since its Fourier transform is
essentially the square of the Fourier transform of ψ and therefore non-
negative. Just like the Wendland functions, this function is a polyno-
mial on its support. In fact, the degree of the polynomial is 4l+ 1, and
ψl ∈ C2l(R).
Now a family of strictly positive definite radial functions is constructed
by a dimension walk using the D operator:

ψk,l = Dkψl.
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These functions are strictly positive definite and radial on Rs for s ≤
2k + 1, are polynomials of degree 4l − 2k + 1 on their support and
in C(2(l − k) in the interior of the support. On the boundary the
smoothness increases to C2l−k.
The Wu’s RBFs available in the toolbox are:

- Wu03: of class C6, usable in R.

- Wu13: of class C4, usable in Rs with s ≤ 3.

- Wu23: of class C2, usable in Rs with s ≤ 5.

- Wu03: of class C0, usable in Rs with s ≤ 7.

2.6 A simple example

We now give a simple example of RBF interpolation: we employ the Franke
bivariate function, which is a standard test function for 2D scattered data
fitting:

f(x, y) =
3

4
e−((9x−2)

2+(9y−2)2)/4 +
3

4
e−((9x+1)2/49−(9y+1)/10)+

+
1

2
e−((9x−7)

2+(9y−3)2)/4 − 1

5
e−((9x−4)

2+(9y−7)2),

and we will use a set of 1089 uniformly scattered data sites in the unit square
in which we sample our test function f . This will be accomplished here by
resorting to the so-called Halton points. These are uniformly distributed ran-
dom points in (0, 1)s generated by a low discrepancy sequence that appears
to be random, but covers the space more evenly; this kind of points performs
very well in low dimensions. The graph of Franke function over the unit
square and an example of Halton points are shown in Figure 2.2.
In order to obtain a better approximation we will add to the Halton data

sites the corner points (0, 0), (0, 1), (1, 0) and (1, 1). As evaluation points
we will use a 40× 40 uniform grid.
The approximation will be done with five of the best-known RBFs: Gaussian
(GA in the plot), Inverse Quadratic (IQ), Inverse Multiquadrics with β = 2
(IMQ) and with β = 1 (MQ), and Thin Plate Spline (TPS).
The box-and-whiskers plot of the absolute approximation errors correspond-
ing to the five functions is shown in Figure 2.3. The three horizontal lines
of the boxes are the lower quartile Q1, the median and the upper quartile
Q3. In order to understand the graphic we give the notion of interquartile
range, which is a measure of statistical dispersion, being equal to the dif-
ference between the upper and lower quartiles: IQR=Q3−Q1. The lowest
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Figure 2.2: Franke bivariate test function and 289 Halton points in the unit
square in R2.

datum of every whisker under the boxes is placed within 1.5IQR of the lower
quartile and the highest datum of every whisker on top of the boxes is placed
within 1.5IQR of the upper quartile. Any datum not included between the
whiskers is plotted as a star. In our case the approximation with Gaussian
RBFs results to have the smallest errors on the evaluation points.
The first four RBFs are scaled with the parameters ε that allow the best ap-
proximation with that function (in Section 3.4 we will explain how we choose
these ε), while TPS is not, since it is shape parameter free.
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Figure 2.3: Distributions of the absolute approximation errors.



Chapter 3

Implementation details

3.1 Main functions

The toolbox has two major functions:

• rbfmodel: this computes the elements of the RBF model, especially
the vector of RBF interpolation coefficients c and the optimal shape
parameter ε, calculated through the “Leave One Out” method.

• rbfapprox: gives the response of the approximation at the untried sites
through the RBF interpolation.

3.2 Repeated points

As it is feasible that an experiment is repeated several times with the same
input values, a problem of invertibility of the distance matrix arises, indeed in
the presence of repeated points it becomes singular. It is therefore necessary
to choose a single point with the respective value given by the measurement
and eliminate the remaining.
In the toolbox, we give the user the ability to choose which of the data
values will be used in the RBF interpolation, through the optional input
parameter rep pts fun in the function rbfmodel.sci. In particular, the
eligible options are:

• fmode: selects the mode data value, that is the one that most occurs
(the default parameter)

• max: selects the maximum data value

31
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• min: selects the minimum data value

• fmean: associates the arithmetic mean of the data values to the re-
peated point

To minimize the computational cost, the function DistanceMatrixChecked.sci

sorts the points in a lexicographic order through the use of the Scilab function
gsort, which performs the sorting by a “quick sort” algorithm for various
data types, and checks two by two if they are the same point. In this way
we get a O(Nlog(N)) computational cost, instead of O(N2).
Now, in case the centers of the RBFs coincide with the data sites (default
option), the procedure is over and we can proceed constructing the interpo-
lation matrix. On the other hand, in case they are not the same set of points,
we assume that the user will always enter a set of centers with no repetitions.
Therefore there is just another problem we should deal with and it arises be-
cause the number of centers equals the number of data sites, sure enough,
the distance matrix is a square matrix and it could be singular. Hence the
function checks if the determinant is equal to zero and, if this condition is
satisfied, it perturbs all centers of a 10−6 factor.

3.3 The ill-conditioning problem

A standard criterion for measuring the numerical stability of an approxima-
tion method is its condition number. In particular, for radial basis function
interpolation we need to look at the condition number of the interpolation
matrix A with entries Aij = Φ(xi − xj). For any matrix A its l2−condition
number is given by

k2(A) = ‖A‖2‖A−1‖2 =
σmax

σmin

,

where σmax and σmin are the largest and the smallest singular values of A. If
we concentrate on positive definite matrices A, then the condition number
of A can also be computed as the ratio

λmax

λmin

of the largest and the smallest eigenvalues.
Narcowich and Ward established upper bounds on the norm of the inverse of
A (lower bounds for λmin) in terms of separation distance of the data sites

qX =
1

2
min
i 6=j
‖xi − xj‖2.
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We can picture qX as the radius of the largest ball that can be placed around
every point in X such that two balls do not overlap. Thus, the more the
data sites are close together, the more the condition number of the distance
matrix increases. The derivation of these bounds is rather technical, and for
details we refer to the original papers.
When A is ill-conditioned, i.e., its condition number is large, then most of
standard linear system solvers may become unreliable because the solution
cj−values found by these solvers become extremely large in magnitude and
a vast amount of numerical cancellation then occurs when Pf is obtained
through the combination of these large quantities, with the consequent loss
of a significant amount of accuracy.
Moreover, we have seen that the definition of Φ(· ) = ϕ(‖· ‖) will sometimes
involve a shape or scaling factor ε , for example, the Gaussian basic func-
tion, given by ϕ(· ) = e−ε

2‖·‖2 , where ‖· ‖ is usually the Euclidean norm. We
restrict our attention only to fixed constant ε > 0. It is feasible that the
smallest error in RBF interpolation is associated with the choice of a basic
function that has a rather flat shape (i.e., ε is small), and therefore the cor-
responding interpolation matrix is dense and close to singular (due to almost
parallel rows or columns of the interpolation matrix).

3.3.1 Scaling

The first operation we apply in our code is to normalize the whole set of input
data: in this way we reduce the gap between the data and this allows data
on different scales to be compared, by bringing them to a common scale. We
perform the scaling in the interval [0, 1]. The file rbfmodel.sci normalizes
the data sites and data values sets and the scaling parameters used here allow
the file rbfapprox.sci to normalize the evaluation points and to rescale the
approximate solution Pf to the order of magnitude of the data values.
We give now a numerical example in order to show the effects of scaling data:
in Chapter 4 we will describe a practical situation in which approximating
through RBF interpolation could be very useful, and here we are going to
use some of the experimental data of that model. At the moment we do not
need a description of the data, we just want to find plausible value of the
process in four particular locations (two inside and two outside the range
where the data sites lie) twice: the first time without normalizing the data,
and the second normalizing them.
Besides the data sites and the data value, we also know the values that the
process takes in the four evaluation points, so that we can plot the errors
that our approximations give. In Figure 3.1 the two approximations and the
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Figure 3.1: On the left, the approximations of the real solution (green) with
scaling (blue) and without scaling (black). On the right, the relative errors.

corresponding errors are plotted.

3.3.2 Riley’s algorithm

More than fifty years ago, a regularization technique for solving ill-conditioned
symmetric positive definite linear systems was developed by J. D. Riley, so
we tried to apply it when working with positive definite RBFs and the cen-
ters coincide with the data sites, so that the interpolation matrix results to
be positive definite and symmetric.
Assuming the goal is to solve the system

Ax = b

where A is positive definite, symmetric and ill-conditioned, Riley’s algorithm
solves a regularized system

Cy = b

where

C = A+ µI, µ > 0.

which can be factorized safely with the Cholesky decomposition because if
A is symmetric positive definite, so is C.
If all we concerned ourselves with was solving Cy = b this would be ridge
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regression or Tikhonov regularization. But since A = C − µI we can take
another step by deriving the identity

A−1 = C−1
∞∑
k=0

(
µC−1

)k
and therefore, reminding that y = C−1b, we get the solution to the original
system as

x = A−1b

= C−1
∞∑
k=0

(
µC−1

)k
b

= y
∞∑
k=0

(
µC−1

)k
= y +

(
µC−1

)
y +

(
µC−1

)2
y + . . .

= y +
(
µC−1

) [
y +

(
µC−1

)
y +

(
µC−1

)2
y + . . .

]
which gives us a simple iteration method for approximating the solution to
Ax = b

x0 = 0

xk+1 = y + µC−1xk, k = 0, 1, 2, . . .
(3.1)

This technique allows us to find x by only performing a stable Cholesky
decomposition on C.
We give now another interpretation of Riley’s algorithm: let C = A+ µI as
before, then

Ax = b⇔ (C − µI)x = b

Now we split A and iterate:

x0 = 0

Cxk+1 = b + µxk, k = 0, 1, 2, . . .
(3.2)

which corresponds to (3.1), since y = C−1b.
In [3] is shown this is equivalent to the iterative improvement, a numerical
procedure described by [?], starting from x0 = 0:

a. rk = b− Axk

b. Solve the linear system Ce = rk

c. xk+1 = xk + e
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We can easily verify the equivalence

Cxk+1
c
= Cxk + Ce

a,b
= Cxk + b− Axk
C=A+µI

= b + µIxk
(3.2)
= Cxk+1

The major problem with Tikhonov regularization is the choice of µ. A usual
approach could be the cross validation or the maximum likelihood, but we
can do some useful considerations: let the eigenvalues of A be

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax,

thus the eigenvalues of µC−1 are 0 < µ
λi+µ

< 1 for i = 1, . . . , n and the
series

x =
∞∑
k=0

(
µC−1

)k
y

converges. So for µ � λmin we have fast convergence. Furthermore the
matrix C is better conditioned than A since

k(C) =
λmax + µ

λmin + µ
� λmax

λmin

= k(A)

provided µ > λmin. In summary µ needs to be

• large enough to improve conditioning,

• small enough to provide fast convergence.

Choosing the regularization parameter µ to maximize stability but minimize
the summation length is not a straightforward procedure, so it is recom-
mended to use µ ≈ λmin. In his paper Riley gives the practical suggestion to
choose µ small, precisely

µ ≈ 10−p+α

where p is the desired precision and α = 2 or 3. In our toolbox we fixed µ to
the value 10−7, but the user can modify this value in the function Riley.sci.
A spontaneous question arises: which of the two described forms of the al-
gorithm is more efficient? In order to answer this question we applied both
of them in the gaussian RBF interpolation of a set of 1089 Halton data sites
evaluated with the Franke bivariate test function. As evaluation points we
used a 40 × 40 uniform grid. We verified that using the same parameters
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Figure 3.2: A comparison between the two proposed algorithms. On the
left the distributions of the times spent, on the right the distributions of the
errors.

ε and µ the two algorithms spend almost the same time; in Figure 3.2 the
boxplots on the left are related to the distributions of the times employed by
the two algorithms (we run them 50 times), while on the right are plotted the
boxplots related to the distributions of the absolute approximation errors of
the two approximations of the Franke function, the first obtained using the
first form and the second obtained using the iterative improvement : from the
comparison we cannot gather if one of the two methods is better.
In any case we prefer the first form, because, on equal terms, the iterative

improvement contains subtractions, which could cause the loss of significant
digits.
We now make some numerical tests in order to decide when it makes sense
to compute the approximation using the Riley’s algorithm: the test function
will be still the Franke function on [0, 1]2, but we will variate the number
and the distribution of the data sites. In particular we consider four cases:
289 points on a uniform grid (Figure 3.3), 289 Halton points (Figure 3.4),
1089 points on a uniform grid (Figure 3.5) and 1089 Halton points (Figure
3.6). For every case we give the plots of two absolute approximation errors,
on the left the one related to the “classical” approximation and, on the right,
the one related to the approximation using Riley’s algorithm. In the last
two figures we can notice that the errors using the Riley’s algorithm decrease
of one order of magnitude, thus we choose to activate the Riley’s algorithm
only if the data sites are more than 1000.
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Figure 3.3: Absolute approximation errors without and with Riley’s algo-
rithm on a uniform grid 17× 17 (289 points).

3.3.3 Benchmark test on the ill-conditioning problem

From what we have said introducing the ill-conditioning problem we can
evince that if we want to improve the accuracy of the interpolant adding
interpolation points the ill-conditioning increases due to the decrease in the
separation distance. In our case we can also consider the situation in which
one needs to know the behaviour of the process he is studying in a really
small neighbourhood and thus has to use a set of really close together data
sites. In this subsection we show with a numerical experiment that even if the
condition number is indeed high, reducing the separation distance between
the data sites does not compromise the robustness of the RBF interpolation
method we have constructed.
We created three sets of points in R2 and every set consists of 60 points in
[0, 1]× [0, 1], for the sake of simplicity. 20 of them are pseudo-random, while
40 are created with the help of normal distributions: 20 points are distributed
as N (0.2, σ2)×N (0.2, σ2) and the remaining 20 as N (0.8, σ2)×N (0.8, σ2).
The three sets differ because of three different values of σ2: 10−2, 10−3 and
10−5. Figure 3.7 shows the first set of data sites we consider.

Remark To give an idea of how the points of the two last sets are concen-
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Figure 3.4: Absolute approximation errors without and with Riley’s algo-
rithm on 289 Halton points.

Figure 3.5: Absolute approximation errors without and with Riley’s algo-
rithm on a uniform grid 33× 33 (1089 points).
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Figure 3.6: Absolute approximation errors without and with Riley’s algo-
rithm on 1089 Halton points.

trated around the average points, we point out that if

x ∼ N (µx, σ
2
x) and y ∼ N (µy, σ

2
y),

the probability that a point (x, y) lies outside B((µx, µy), R) is given by

P (‖(x, y)− (µx, µy)‖ ≥ R) = P (‖(x, y)− (µx, µy)‖2 ≥ R2)

= P ((x− µx)2 + (y − µy)2 ≥ R2)

≤ E((x− µx)2 + (y − µy)2)
R2

.

Now, by linearity of expectation and definition of σ2
x and σ2

y

E((x− µx)2 + (y − µy)2)
R2

=
E((x− µx)2) + E((y − µy)2)

R2

=
σ2
x + σ2

y

R2
.

Thus, since in our case σ2
x = σ2

y = σ2, we obtain

P (‖(x, y)− (µx, µy)‖ ≥ R) ≤ 2σ2

R2
.

Coming back to our example, the data values are generated by the function
f = x1(sinx2), which we want to approximate through the RBF interpolation
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Figure 3.7: First set of data sites (σ2 = 10−2)

method. We choose Gaussian RBFs, centers coinciding with data sites, and
a 20 × 20 uniform grid as evaluation points. Table 3.1 shows how a strong
decrease of the separation distance qX does not affect the robustness of the
method, in fact in spite of their high condition numbers k2(A), the three sets
of points give very similar approximations, though the separation distance of
the third is much smaller.

qX k2(A) RMS Error Maximum Error

σ2 = 10−2 4.83e− 04 9.72e+ 18 2.11e− 02 5.53e− 02

σ2 = 10−3 4.83e− 05 4.79e+ 18 2.13e− 02 5.54e− 02

σ2 = 10−5 4.83e− 07 3.06e+ 20 2.14e− 02 5.51e− 02

Table 3.1: Benchmark test on the ill-conditioning problem results.
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3.4 Choice of the shape parameter

In this section we consider the choice of the shape parameter for a fixed
data set. This is probably the situation that will arise most frequently in
practical situations. In other words, we assume we are given a set of data
(xj, fj), j = 1, . . . , N , with data sites xj ∈ Rs and function values fj =
f(xj) ∈ R. Our goal is to use a RBF interpolant

Pf (x) =
N∑
j=1

cjϕ(‖x− xj‖)

to match these data exactly, i.e., to satisfy Pf (xi) = f(xi), i = 1, . . . , N .
The two most important questions now seem to be:

• Which basic function ϕ should we use?

• How should we scale the basis functions ϕj = ϕ(‖·−xj‖)?

About the first issue, if we know that the data come from a very smooth
function, then application of one of the smoother basic functions is called
for. Otherwise, there is not much to be gained from doing so. In fact, these
functions may add too much smoothness to the interpolant.
But we want to focus on the second question: we will assume throughout
that a (fixed) basic function has been chosen, and that we will use only one
value to scale all basis functions uniformly.
The strategy we chose to implement is a cross validation approach. In [Rippa
(1999)] an algorithm is described that corresponds to a variant of cross val-
idation known as “leave-one-out”cross validation. In this algorithm an “op-
timal”value of ε is selected by minimizing the (least square) error for a fit to
the data based on an interpolant for which one of the centers was “left out”.
A good feature of this method is that the dependence of the error on the data
function is taken into account. Specifically, if P

[k]
f is the RBF interpolant to

the data {f1, . . . , fk−1, fk+1, . . . , fN}, i.e.,

P
[k]
f (x) =

N∑
j=1
j 6=k

c
[k]
j ϕ(ε‖x− xj‖)

such that
P

[k]
f (xi) = fi, i = 1, . . . , k − 1, k + 1, . . . , N,

and if Ek is the error
Ek = fk − P [k]

f (xk)
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at the one point xk not used to determine the interpolant, then the quality of
the fit is determined by the norm of the vector of errors E = [E1, . . . , EN ]T

obtained by removing in turn one of the data points and comparing the re-
sulting fit with the (known) value at the removed point. We will use the
maximum norm.
By adding a loop over ε we can compare the error norms for different values
of the shape parameter, and choose that value of ε that yields the minimal
error norm as the optimal one.
While a naive implementation of the leave-one-out algorithm is rather ex-
pensive (on the order of N4 operations), Rippa showed that the computation
of the error components can be simplified to a single formula

Ek =
ck

A−1kk
(3.3)

where ck id the kth coefficient of the interpolant Pf based on the full data
set, and A−1kk is the kth diagonal element of the inverse of the corresponding
interpolation matrix. Since both ck and A−1 need to be computed only once
for each value of ε this results in O(N3) computational complexity. We can
notice that all entries in the error vector E can be computed in a single
statement in Scilab if we vectorize the component formula (3.3).
In order to find a good shape parameter as quickly as possible we imple-
mented the function rbf minsearch.sci, that finds a local minimum of the
cost function for ε CostEpsilon.sci. Since the minimum will be local, it
is opportune to choose a “good ” interval in which it will be calculated. An
example of the function CostEpsilon depending on ε is shown in Figure 3.8
Details on the algorithm of this optimization function are given in Subsection
3.4.1.

3.4.1 Finding a minimum of a function of one variable
with rbf minsearch

rbf minsearch is a file function inspired by the MATLAB R©’s function
fminbnd. As MATLAB R© reports the outcome may be just a local mini-
mum and not a global minimum, indeed it is known that the algorithm gives
an exact minimizer only if the cost function is unimodal.

Definition A function f(x) is a unimodal function if for some value m,
it is monotonically increasing (decreasing) for x ≤ m and monotonically
decreasing (increasing) for x ≥ m. In that case, the maximum (minimum)
value of f(x) is f(m) and there are no other local maxima (minima).
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Figure 3.8: ‖E‖∞ of the approximations of a process (described in Chapter
4) calculated by the function CostEpsilon in 100 different ε in the interval
(6, 9).
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The algorithm is based on golden search and parabolic interpolation.
The golden search is a technique for finding the extremum (minimum or max-
imum) of a unimodal function by successively narrowing the range of values
inside which the extremum is known to exist. The technique derives its name
from the fact that the algorithm maintains the function values for triples of
points whose distances form a golden ratio.
The parabolic interpolation starts with three arbitrary real numbers v1, v2, v3.
At the general stage one has vk−2, vk−1 and vk. vk+1 will be the abscissa of the
minimum ordinate of the parabola (with vertical axis) through (vi, f(vi)), i =
k − 2, k − 1, k.
The algorithm rbf minsearch finds an approximation to the minimum of a
function f defined on the interval [a, b]. Unless a is very close to b, f is never
evaluated at the endpoints a and b, so f needs only to be defined on (a, b),
and if the minimum is actually at a or b, then an interior point distant no
more than 2tol from a or b will be returned, where tol is a tolerance (see
equation (3.4) below).
At a typical step of the algorithm there are six significant points: a, b, u, v, w
and x, not all distinct. The positions of this points change during the algo-
rithm. Initially (a, b) is the interval on which f is defined, and

v = w = x = a+

(
3−
√

5

2

)
(b− a).

The magic number (3 −
√

5)/2 is rather arbitrarily chosen so that the first
step is the same as for a golden section search.
At the start of a cycle the points a, b, u, v, w and x always serve as follows: a
local minimum lies in [a, b]; of all the points at which f has been evaluated, x
is the one with the least value of f , or the point of the most recent evaluation
if there is a tie; w is the point of the next lowest value of f ; v is the previous
value of w; and u is the last point at which f has been evaluated (undefined
the first time).
The tolerance is given by

tol =
√
eps|x|+ TolX

3
, (3.4)

where eps is the machine-precision and TolX is fixed to the default value
10−8, but can be modified by the user.
Let m = 1

2
(a + b) be the midpoint of the interval known to contain the

minimum. if |x − m| ≤ 2tol − 1
2
(b − a), i.e., max(x − a, b − x) ≤ 2tol,

then the procedure terminates with x as the approximate position of the
minimum. Otherwise, numbers p and q (q ≥ 0) are computed so that x+p/q
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is the turning point of the parabola passing through (v, f(v)), (w, f(w))
and (x, f(x)). If two or more of these points coincide, or if the parabola
degenerates, then q = 0.
p and q are given by

p = (x− v)2(f(x)− f(v))− (x− w)2(f(x)− f(w))

q = 2((x− v)(f(x)− f(v))− (x− w)(f(x)− f(w)))

Let now e be the value of the correction p/q at the second-last cycle. If
|e| ≤ tol, q = 0, x + p/q /∈ (a, b), or |p/q| ≥ |e|/2, then a “golden section”
step is performed, i.e., the next value of u is

u =


(√

5−1
2

)
x+

(
3−
√
5

2

)
a, x ≥ m(√

5−1
2

)
x+

(
3−
√
5

2

)
b, x < m

Otherwise u is taken as x + p/q (a “parabolic interpolation” step), except
that the distances |u − x|, u − a and b − u must be at least tol. Then f
is evaluated at the new point u, the points a, b, v, w, and x are updated as
necessary, and the cycle is repeated. We see that f is never evaluated at two
points closer together than tol.
Typically the algorithm terminates in the following way: x = b − tol (or,
symmetrically, a+tol) after a parabolic interpolation step has been performed
with the condition |u − x| ≥ tol enforced. The next parabolic interpolation
point lies very close to x and b, so u is forced to be x−tol. If f(u) > f(x) then
a moves to u, b − a becomes 2tol, and the termination criterion is satisfied.
Note that two consecutive steps of tol are done just before termination. If a
golden section search were done whenever the last, rather than second-last,
value of |p/q| was tol or less, then termination with two consecutive steps
of tol would be prevented, and unnecessary golden section steps would be
performed.

3.5 Interpolation with compactly supported

RBFs

In this section we illustrate a technique that could be used in order to opti-
mize the RBF interpolation in case of compactly supported functions. The
toolbox, in fact, is not yet provided of such optimization codes.
In order to deal with large sets of data efficiently we frequently use compactly
supported basic functions. For their successful implementation we need to
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know which data sites lie in the support of a given basis function (such a
query is known as a range search). We also may be interested in finding
all centers whose support contains a (given) evaluation point (containment
query). Therefore the main difference to our previous interpolants is that
now the interpolation matrix can be made sparse, because we do not want
to compute the matrix entries for all pairs of points since we know all of the
entries for far away points will be zero.
It turns out that it is easier to deal with compact support if we compute the
distance matrix corresponding to the (1− εr)+ term, as otherwise those en-
tries of the distance matrix that are zero (since the mutual distance between
two identical points is zero) would be lost in the sparse representation of the
matrix.
As we know that the interpolation matrix will be sparse, we could write a
code to efficiently assemble the matrix. Once we have defined a sparse ma-
trix, Scilab will automatically use state-of-the-art sparse matrix techniques to
solve the linear system. An efficient data structure is needed and we suggest
kd−trees, implemented in a set of MATLAB R© files written by Guy Shechter,
which can be downloaded by the MATLAB R© Central File Exchange.
The code of the file that computes the distance matrix, in this case, contains
two similar blocks that will be used depending on whether we have more cen-
ters than data sites or vice versa: if there are more data sites than centers,
then it will build a kd−tree for the data sites and find, for each center, those
data sites within the support of the basis function centered at that center,
i.e., it constructs the sparse matrix column by column. In the other case it
starts with a tree for the centers and builds the matrix row by row.
A kd−tree (k−dimensional tree) is a space-partitioning data structure for
organizing points in k−dimensional space. The purpose of kd−tree is to de-
compose a set of N data points in Rs into a relatively small number of subsets
such that each subset contains roughly the same number of data sites. Each
node in the tree is defined by a splitting plane that is perpendicular to one
of the coordinate axes and passes through one of the data points. Therefore
the splitting planes partition the set of points at the median into “left” and
“right” (or “top” and “bottom”) subsets, each with roughly half the points
of the parent node. These children are again partitioned into equal helves,
using planes through a different dimension. This partitioning process stops
after logN levels. The computational complexity for building a kd−tree from
N points in Rs is O(sN logN). Once the tree is built, a range query can be
performed in O(logN) time. This compares favorably with the O(N) time
it takes to search the “raw” data set.
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Chapter 4

A real case approximation

In this chapter we are going to show how useful could be the RBFs interpola-
tion method for companies with a practical example, based on data deriving
form measurements taken in different phases of a die casting process.
Die casting is a metal casting process that is characterized by forcing molten
metal under high pressure into a mould cavity. After a product is designed,
the mould cavity is created using two hardened tool steel dies which have
been machined to form the features of the desired part. The high-pressure
injection leads to a quick fill of the die, which is required so the entire cavity
fills before any part of the casting solidifies. Die casting is widely used for
manufacturing a variety of parts, from the smallest component to entire body
panels of cars. The solidification of the product is performed through the
employment of a cold-chamber machine.
The four stages of the process are:

I Die preparation: the dies are prepared by spraying the mould cavity
with lubricant. The lubricant has two functions: it helps controlling the
temperature of the die and it also assists in the removal of the casting.

II Filling : the dies are then closed and molten metal is injected into the
dies under high pressure through a first fast injection phase. In order to
fill the smallest die cavities a faster second injection phase is performed.

III Ejection: once the mould cavity is filled, the pressure is maintained until
the casting solidifies. The dies are then opened and the shot is ejected
by the ejector pins.

IV Shakeout : this action consists in separating the scrap from the shot.

Die casting is a non-expendable mould casting, namely the mould needs not
to be reformed after each production cycle. In particular, such a mould is

49
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typically very expensive, therefore it has to be employed for the creation of
the largest number of pieces possible.
In this situation the help of an approximation of the process could be really
useful: the product engineers may need the development of a visual model
and such a model could be used in order to optimize the process with the
following aims:

• to maximize the life-time of the mould, because of its cost;

• to minimize the solidification time, in order to maximize the produc-
tion.

Our first step is to select six experimental parameters that will constitute
the data sites in R6. The die casting process parameters we consider are

1. holding furnace temperature, which takes values from 670◦C up to
730◦C every 10◦C;

2. first phase shot velocity, which takes values from 0.1m/s up to 1.3m/s
every 0.2m/s;

3. second phase shot velocity, which takes values from 2.5m/s up to 4.5m/s
every 0.5m/s;

4. shot shift point, which takes values from 270mm up to 370mm every
5mm;

5. selected specific pressure, which takes values from 600bar up to 1000bar
every 100bar;

6. lubrication time, which takes values from 4s up to 12s every 2s;

while the parameters that will serve as data values in our two approximations
are

• die temperature, which takes values from 20.3◦C up to 20.8◦C;

• solidification time, which takes values from 10.5s up to 13.7s.

We are going to approximate these two parameters as functions of the holding
furnace temperature and the lubrication time and considering, in every data
site, the average values of the data values of the other four parameters. This
way we can have the 3−dimensional visual models of how the die temperature
(Figure 4.1) and the solidification time (Figure 4.2) behave as the holding
furnace temperature and the lubrication time change. In particular, in both
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Figure 4.1: The predicted values of the die temperature.

cases we interpolated 150 pairs of data sites and data values, approximating
the processes in 40× 40 grids of evaluation points. We can see that the die
temperature only depends on the lubrication time, while the solidification
time increases as both the holding furnace temperature and the lubrication
time increase.
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Figure 4.2: The predicted values of the solidification time.



Chapter 5

Reference Manual

This chapter is a presentation of the functions in RBFtoolbox. The contents
are

5.1 Model Construction
rbfmodel Finds the RBF model to given sets of data sites and

data values and a given RBF

5.2 Evaluate the Model
rbfapprox Use the RBF model to predict the function at one or

more untried sites

5.3 Radial Basis Functions
gaussian Gaussian
linearLG Linear Laguerre-Gaussian for R2

quadraticLG Quadratic Laguerre-Gaussian for R2

BasicMatern Basic Matérn
LinearMatern Linear Matérn
QuadraticMatern Quadratic Matérn
CubicMatern Cubic Matérn
IQ Inverse Quadratic
IMQ Inverse Multiquadric
generalizedIMQ Generalized Inverse Multiquadric
MQ Hardy’s Multiquadric
generalizedMQ2 Generalized Multiquadric
generalizedMQ3 Generalized Multiquadric
linear Linear Radial Power
cubic Cubic Radial Power
quintic Quintic Radial Power
septic Septic Radial Power
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TPS Thin Plate Spline
TPS2 Second Order Thin Plate Spline
Wendland30 Wendland’s ϕ3,0 for Rs, s ≤ 3
Wendland31 Wendland’s ϕ3,1 for Rs, s ≤ 3
Wendland32 Wendland’s ϕ3,2 for Rs, s ≤ 3
Wendland33 Wendland’s ϕ3,3 for Rs, s ≤ 3
Wu03 Wu’s ψ0,3 for R
Wu13 Wu’s ψ1,3 for Rs, s ≤ 3
Wu23 Wu’s ψ2,3 for Rs, s ≤ 5
Wu33 Wu’s ψ3,3 for Rs, s ≤ 7

5.4 Repeated Points Functions
fmode selects the mode data value
max selects the maximum data value
min selects the minimum data value
fmean associates the arithmetic mean of the data values to the

repeated point

5.5 Auxiliary Functions
DistanceMatrix forms the distance matrix of two sets of points in

Rs

Riley solves ill-conditioned symmetric positive definite
linear systems

rbf minsearch finds a local minimum of a function in a bounded
interval

5.6 Data Files
data1 Example data dsites and dvalues

dataFranke Example data dsites and dvalues
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5.1 Model Construction

Purpose: Finds the RBF model to given sets of data sites and data values
and a given RBF.

Call:
cmodel = rbfmodel(dsites, dvalues, rbfunction)

cmodel = rbfmodel(dsites, dvalues, rbfunction, eps)

cmodel = rbfmodel(dsites, dvalues, rbfunction, eps, ctrs)

cmodel = ...

rbfmodel(dsites, dvalues, rbfunction, eps, ctrs, maxe, mine)

cmodel = ...

rbfmodel(dsites, dvalues, rbfunction, eps, ctrs, ...

mine, maxe, rep pts fun)

Input parameters:
dsites Data sites: an M × s array.
dvalues Data values: M × 1 array with responses at dsites.
rbfunction Handle to a function. See Section 5.3.
eps If present, the shape parameter, otherwise eps= 1 is the de-

fault value.
ctrs If present, the centers for the RBFs, otherwise they will coin-

cide with dsites by default.
mine,maxe If present, then lower and upper bounds on the shape param-

eter.
rep pts fun If present, handle to a function. See Section 5.4.

Output:
cmodel RBF model. Struct with the elements

c Solution of the interpolation system.
cRiley If calculated, solution of the interpolation system

computed with Riley’s algorithm.
rbfunction Handle to a function. See Section 5.3.
eps The shape parameter fuond using the leave one out

method.
ctrs If present, the centers for the RBFs.
dmin,dmax Scaling factors for design sites.
vmin,vmax Scaling factors for design responses.

Remark The first step in rbfmodel is to normalize the input:

for i = 1:size(dsites,2)
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dmin(i) = min(dsites(:,i)); dmax(i) = max(dsites(:,i));

dsites(:,i) = (dsites(:,i)-dmin(i))./ (dmax(i)-dmin(i));

end

vmin = min(dvalues); vmax = max(dvalues);

dvalues = (dvalues-vmin)./ (vmax-vmin);

The values in dmin, dmax, vmin and vmax are returned in cmodel.dmin,
cmodel.dmax, cmodel.vmin and cmodel.vmax.
This function also checks if the data sites set contains repeated points and
selects some of them (and the related data values) through the use of the
rep pts fun function.
If rbfunction is strictly conditionally positive definite of order m on Rs, the
data sites coincide with the centers and the set of data sites is m−unisolvent,
then rbfmodel modifies the interpolation matrix in order to make the prob-
lem uniquely solvable (see Section 2.4) and adding linear precision:

[Rd,Cd] = size(dsites);

PM = [ones(Rd,1) dsites];

IM = [IM PM; [PM’ zeros(Cd+1,Cd+1)]];

dvalues = [dvalues; zeros(Cd+1,1)];

c = IM\dvalues;

In case the distance matrix is symmetric positive definite and the data sites
are more than 1000, the funtion Riley performs a more stable computation
of the solution of the interpolation system.

5.2 Evaluate the Model

Purpose: Use the RBF model to predict the function at one or more untried
sites.

Call:
Pf = rbfapprox(epoints, cmodel)

[Pf,PfRiley] = rbfapprox(epoints, cmodel)

Input parameters:
epoints Evaluation points: trial design sites with s dimensions. For N

trial sites epoints must be an N ×s matrix with the sites stored
rowwise.

cmodel Struct created with rbfmodel; see Section 5.1.
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Output:
Pf Predicted response at epoints.
PfRiley If computed, predicted response using Riley’s algorithm at

epoints.

Remark The computation is performed on normalized trial sites, but the
returned results are in the original “units”.

5.3 Radial Basis Functions

The toolbox provides 27 functions that implement the RBFs presented in
Chapter 2, see the list on page 50. We only present one of them in detail.
Purpose: Get values of the Gaussian function.

Call:
rbf = gaussian(e,r)

Input parameters:
e Shape parameter.
r Where we want to evaluate the function.

Output:
rbf Value of the Gaussian function in r.
class A vector [class1, class2] which gives information about the

function. class1 can take four values:
1 Strictly positive definite function (Gaussian case).
2 Strictly conditionally positive definite function.
3 Strictly conditionally positive definite and shape pa-

rameter free function.
4 Strictly positive definite and compactly supported

function.
class2 returns the order of a strictly conditionally positive
definite function, it takes values between 0 and 4.

Remark The Radial Powers ( linear, cubic, quintic and septic) and
the Thin Plate Splines (TPS and TPS2) are “shape parameter free”, thus the
parameter e does not affect these functions.
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5.4 Repeated Points Functions

We present here only the function fmode, that is the default parameter;
fmean, min and max work in the same way. In particular, the last two func-
tions are provided by Scilab.
Purpose: Get the mode of a vector, that is the one that most occurs.

Call:
[M,k] = fmode(v)

Input parameters:
v Vector.

Output:
M Mode value of v.
k index of the first position of M in v.

5.5 Auxiliary Functions

Purpose: Form the distance matrix of two sets of points in Rs. i.e. DM(i, j) =
‖dsitei − centerj‖2.

Call:
DM = DistanceMatrix(dsites,ctrs)

Input parameters:
dsitesM × s matrix representing a set of M data sites in Rs(i.e., each row

contains one s−dimensional point).
ctrs N × s matrix representing a set of N centers in Rs (one center per

row).

Output:
DM M × N matrix whose i, j position contains the Euclidean distance

between the i−th data site and j−th center.

Purpose: Solve ill-conditioned symmetric positive definite linear systems.
It is active if the data sites are more than 1000.

Call:
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x = Riley(A,b)

Input parameters:
A Symmetric positive definite matrix.
b Vector with constant terms.

Output:
x Solution of the linear system.

Purpose: Find a local minimum of a function in a bounded interval.

Call:
[x, fx, exitflag, output] = ...

rbf minsearch(fun, xmin, xmax, options, fparam DM data, ...

fparam rbf, fparam dvalues)

Input parameters:
fun Function for which we want a local minimum.
xmin,xmax Bounds of the interval in which we search a minimum.
options Struct currently not optional with the elements

TolX Tolerance on the distance from the minimum
fixed to 10−8.

MaxIter Maximum number of iterations fixed to in-
finity.

MaxFunEvals Maximum number of evaluations of the func-
tion fixed to infinity.

PrintToScreen If true, print information to screen. It is cur-
rently set to false.

fparam DM data Distance matrix.
fparam rbf Radial basis function.
fparam dvalues Data values.

Output:
x Local minimum of the function.
fx Value of the function in x.
exitflag It gives information about the convergence and can take three

values:
1 Convergence.
0 Reached maximum number of iteration, function evalu-

ations.
−1 Not convergence/error.

output It is possible to have an output with all the information about
the convergence of the method.
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5.6 Data Files

Currently the toolbox contains two test data sets, illustrated in Section 5.7.
The command

load(’data1’,’dsites’,’dvalues’)

makes the arrays dsites 150 × 2 and dvalues 150 × 1 available in the
workspace,i.e., N = 150 data sites in s = 2 dimensions and the related
measurements. The design sites stored in dsites are sampled in the two-
dimensional area [0, 100]2.
The command

load(’dataFranke’,’dsites’,’dvalues’)

makes the arrays dsites 100 × 2 and dvalues 100 × 1 available in the
workspace, i.e., N = 100 data sites in s = 2 dimensions and the related
values of the Franke bivariate test function

f(x, y) =
3

4
e−((9x−2)

2+(9y−2)2)/4 +
3

4
e−((9x+1)2/49−(9y+1)/10)+

+
1

2
e−((9x−7)

2+(9y−3)2)/4 − 1

5
e−((9x−4)

2+(9y−7)2).

The design sites stored in dsites are sampled in the two-dimensional area
[0, 1]2.

5.7 Example of usage

An example of simple usage of the two most important functions in the
toolbox, namely rmfmodel and rbfapprox, is presented here. The example
shows how one can get a surface approximation to a given data set. We start
by loading the data set data1 provided with the toolbox, cf. Section 5.6,

load(’data1’,’dsites’,’dvalues’)

Now the 150 × 2 array dsites and 150 × 1 array dvalues are present in
the workspace. We choose the gaussian RBF, centers coinciding with data
sites (ctrs = dsites) and the mode as the value picked in case of repeated
points. We want to find a “good” shape parameter in the interval [0, 10]. We
are now ready to make the model by calling rbfmodel,
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cmodel = rbfmodel(dsites, dvalues, gaussian, [], ctrs, 0, 10, fmode);

From the returned result we can extract information about the generated
model. For instance, the shape parameter that will be used is

cmodel.eps = 4.016625

Having the model been stored in the structure array cmodel we may use it
for prediction at new (untried) sites. We generate a grid of points on which
to evaluate the predictor rbfapprox. We choose a 40 × 40 mesh of points
distributed equidistantly in the area [0, 100]2 covered by the design sites, and
call the predictor with the mesh points and the cmodel,

neval = 40; grid = linspace(0,100,neval);

[xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)];

Pf = rbfapprox(epoints, cmodel);

Since we have less than 1000 data sites, PfRiley would be identical to Pf,
thus we do not ask for this parameter as output. The returned vector Pf

contains the predicted values at the mesh. In order to plot the result we
reshape Pf to match the grid and use xe and ye, which contain the reshaped
coordinates of the evaluation points:

f = scf(1)

mesh(xe,ye,matrix(Pf,neval,neval));

f.color_map = oceancolormap(5);

a = gca()

a.font_size = 4;

The resulting plot is shown in Figure 5.1.
To give another example we can load the data set dataFranke present in

the toolbox (see Section 5.6) and therefore approximate the Franke bivariate
function:

load(’dataFranke’,’dsites’,’dvalues’)

Now the 100 × 2 array dsites and 100 × 1 array dvalues are present in
the workspace. We choose the QuadraticMatern RBF, centers coinciding
with data sites (ctrs = dsites) and the mode as the value picked in case
of repeated points. In this case we want to find a “good” shape parameter in
the interval [2, 3]. We are now ready to make the model by calling rbfmodel,

cmodel = rbfmodel(dsites, dvalues, QuadraticMatern, [], ctrs, 2, 3, fmode);
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Figure 5.1: Mesh plot of the predicted values at the grid points

The shape parameter that will be used is cmodel.eps = 2.834928.
We may now use cmodel for prediction at new (untried) sites. As in the
first example we generate a 40 × 40 grid of points on which to evaluate the
predictor rbfapprox, with the differende that now the area is [0, 1]2. Then
we can call the predictor with the mesh points and cmodel,

neval = 40; grid = linspace(0,1,neval);

[xe,ye] = meshgrid(grid); epoints = [xe(:) ye(:)];

Pf = rbfapprox(epoints, cmodel);

Since, in this case, we know the real values of the Franke function in the
evaluation points, we can also compute the maximum error and the root
mean square error:

exact = Franke(epoints);

maxerr = norm(Pf-exact,’inf’);

rms_err = norm(Pf-exact)/neval;

printf(’Maximum error: %e\n’, maxerr)

printf(’RMS error: %e\n’, rms_err)

getting
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Figure 5.2: Mesh plot of the predicted values of the Franke function and the
absolute approximation error.

Maximum error: 1.979431e-002

RMS error: 3.176449e-003

We are now ready to reshape Pf and the absolute approximation error abs(Pf-exaxt)
and to plot them as in Figure 5.2:

f = scf(1)

subplot(1,2,1)

mesh(xe,ye,matrix(Pf,neval,neval));

f.color_map = oceancolormap(5);

a = gca()

a.font_size = 4;

subplot(1,2,2)

mesh(xe,ye,matrix(abs(Pf-exact),neval,neval));

f.color_map = oceancolormap(5);

a = gca()

a.font_size = 4;

5.8 How to install the package

In order to install the package the following steps should be done:

1. Download the package “RBFtoolbox.zip” from the Openeering site
www.openeering.com;



64 CHAPTER 5. REFERENCE MANUAL

2. Unzip the file in a working directory (e.g. “D:\scilabpackages”);

3. Open Scilab and move to the package directory
(in our case “D:\cilabpackages\RBFtoolbox”) using the command
cd ‘‘D:\scilabpackages\RBFtoolbox’’;

4. Build the package using the command exec builder.sce;

5. Load the package using the command exec loader.sce;

6. Try demo clicking on the Scilab demonstration icon in the toolbar and
select demo from the RBF toolbox

Figure 5.3: Scilab demonstration.

7. Try to run the demo Franke, for example

8. Check in the help, the RBFtoolbox is available for further details.
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Figure 5.4: RBFtoolbox Franke demo.

Figure 5.5: Help for rbfmodel function.
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