

www.openeering.com

powered by

SCILAB AS A CALCULATOR
The purpose of this tutorial is to get started using Scilab as a basic

calculator by discovering some predefined data types and

functions.

Level

This work is licensed under a Creative Commons Attribution-NonComercial-NoDerivs 3.0 Unported License.

Scilab as a Calculator www.openeering.com page 2/12

Step 1: The purpose of this tutorial

In the tutorial “First steps with Scilab” we have introduced to the user the

Scilab environment and its features and here the aim is to make him/her

comfortable with Scilab basic operations.

Step 2: Roadmap

In this tutorial, after looking over Scilab basic predefined data types and

functions available in the environment, we will see the usage of variables,

how to define a new variable and some operations on numbers.

We will apply the acquired competencies for the resolution of a quadratic

equation of which we know the solution.

Descriptions Steps

Basic commands and operations 3-8

Predefined variables 9

Arithmetic and formats 10-12

Variables 13-16

Functions 17

Example 18

Conclusions and remarks 19-20

Scilab as a Calculator www.openeering.com page 3/12

Step 3: Scilab as a basic calculator

Scilab can be directly used to evaluate mathematical expressions.

ans is the default variable that stores the result of the last mathematical

expression (operation). ans can be used as a normal variable.

0.4 + 4/2

ans =

 2.4

Step 4: Comments

A sequence of two consecutive slashes // out of a string definition marks

the beginning of a comment. The slashes as well as all the following

characters up to the end of the lines are not interpreted.

// This is a comment

// Let's divide the previous value by two

0.4 + 4/2

ans/2

ans =

 2.4

ans =

 1.2

Step 5: Basic mathematical operators

Basic mathematical operators:

- addition and subtraction: +, -

- multiplication and division: *, /

- power: ^

- parentheses: ()

(0.4 + 4)/(3-4^0.5) // A comment after the command

ans =

 4.4

Scilab as a Calculator www.openeering.com page 4/12

Step 6: The Scilab operator “,”

The Scilab operator , can be used to separate expressions in the same

row.

// Two expressions

1*2 , 1.1 + 1.3

ans =

 2.

ans =

 2.4

Step 7: The Scilab operator “...”

The Scilab operator ... can be used to split an expression in more than

one row.

// The expression is toooooooo long

1 + 1/2 + 1/3 + ...

1/4 + 1/5 + ...

1/6

ans =

 2.45

Step 8: The Scilab operator “;”

The Scilab operator ; is used to suppress the output, which will not be

displayed in the Console.

The command ; can also be used to separate expressions (in general

statements, i.e. Scilab commands) in the same row.

// An expression

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6;

// The result is stored in the ans variable

ans

ans =

 2.45

Scilab as a Calculator www.openeering.com page 5/12

Step 9: Predefined variables - 1/5
In Scilab, several constants and functions already exist and their names

begin with a percent character %.

For example, three of the main variables with a mathematical meaning are

- %e, which is the Euler’s constant e

- %pi, which is the mathematical constant

- %i, which is the imaginary number i

In the example on the right we have displayed the value of and its sinus

through the use of the Scilab sinus function sin. We should obtain

 , but we get a really close to zero value because of the machine

rounding error.

%pi // pi = 3.1415....

sin(%pi)

ans =

 3.1415927

ans =

 1.225D-16

Step 10: Complex arithmetic

Also complex arithmetic is available. %i, is the imaginary unit i

On the right we get the imaginary unit also computing the square root of -1

and the Euler relation returns a really close to zero value because of the

machine rounding error.

%i // imaginary unit

sqrt(-1)

exp(%i*%pi)+1 // The famous Euler relation

ans =

 i

ans =

 i

ans =

 1.225D-16i

Scilab as a Calculator www.openeering.com page 6/12

Step 11: Extended arithmetic

In Scilab, the “not a number” value Nan comes from a mathematically

undefined operation such as 0/0 and the corresponding variable is %nan,

while Inf stands for “infinity” and the corresponding variable is %inf.

The command ieee() returns the current floating point exception mode.

0 floating point exception produces an error

1 floating point exception produces a warning

2 floating point exception produces Inf or Nan

The command ieee(mod) sets the current floating point exception mode.

The initial mode value is 0.

ieee(2) // set floating point exceptions for Inf and

Nan

1/0

0/0, %inf*%inf, %inf*%nan

ieee(0) // unset floating point exceptions for Inf and

Nan

1/0

0/0

ans =

 Inf

ans =

 Nan

ans =

 Nan

ans =

 Nan

 !--error 27

Division by zero...

 !--error 27

Division by zero...

Scilab as a Calculator www.openeering.com page 7/12

Step 12: Change the visualization format

All computations are done in double precision arithmetic, although the

visualization format may be limited.

Using the command format the option 'e' sets the e-format, while 'v'

sets the variable one. We can also choose the number of digits to

visualize.

format('v',20); %pi // Change visualization

format('e',20); %pi // Change visualization

format("v",10); %pi // Restore original visualization

ans =

 3.14159265358979312

ans =

 3.1415926535898D+00

ans =

 3.1415927

Step 13: Defining new variables

Syntax:

name of the variable = expression

where expression can involve other variables.

Some constraints:

- Variable names can be up to 24 characters long

- Variable names are case sensitive (variable A is different from a)

- The first letter must be an alphabetic character (a-A, z-Z) or the

underscore character (_)

- Names must not contain blanks and special characters

The disp command is used to display data to the console.

// Define variables a and b

a = 4/3;

b = 3/4;

// Define variable c as expression of a and b

c = a*b;

// Display the result

disp(c)

 1.

Scilab as a Calculator www.openeering.com page 8/12

Step 14: String variables

String variables are delimited by quotes characters of type " or '.

The command string converts a number into a string.

// Two strings

a = 'Hello';

b = 'World';

// String concatenation

c = a + " " + b + "!" ;

disp(c);

// Concatenation of a string with a number

d = "Length of " + a + " is " + string(length(a))

Hello World!

d =

 Length of Hello is 5

Step 15: Boolean variables

Boolean variables are used to store true (%t or %T) or false data (%f or %F)

typically obtained from logical expressions.

The comparison operators are:

- < : Less than

- <= : Less than or equal to

- == : Equal to

- >= : Greater than or equal to

- > : Greater than

// Example of a true expression

res = 1>0

// Example of a false expression

res = 1<0

res =

 T

res =

 F

Scilab as a Calculator www.openeering.com page 9/12

Step 16: Main advantages using Scilab

When working with variables in Scilab we have two advantages:

- Scilab does not require any kind of declaration or sizing

- The assignment operation coincides with the definition

In the example on the right we have not declared the type and the size of

a: we just assigned the value 1 to the new variable.

Moreover, we have overwritten the value 1 of type double contained in a

with the string Hello! by simply assigning the string to the variable.

In the Variable Browser we can see that the type of a changes outright:

// a contains a number

a = 1;

disp(a)

// a is now a string

a = 'Hello!';

disp(a)

 1.

 Hello!

Scilab as a Calculator www.openeering.com page 10/12

Step 17: Scilab functions

Many built-in functions are already available, as you can see in the table

on the right. Type in the Console the command help followed by the

name of a function to get the description, the syntax and some examples

of usage of that function.

In the examples on the right you can see different ways to set input and

output arguments.

Field Commands

Trigonometry sin, cos, tan, asin, acos, atan,

sinh, cosh, ...

Log - exp – power exp, log, log10, sqrt, ...

Floating point floor, ceil, round, format,

ieee, ...

Complex real, imag, isreal, ...

// Examples of input arguments

rand

sin(%pi)

max(1,2)

max(1,2,5,4,2)

// Examples of output arguments

a = rand

v = max(1,2,5,4,2)

[v,k] = max(1,2,5,4,2)

Scilab as a Calculator www.openeering.com page 11/12

 √

 √

Step 18: Example (quadratic equation)

The well-known solutions of a quadratic equation

are

where . If solutions are imaginary.

We assess the implementation on the following input data:

Coefficient Value
a +3.0

b -2.0

c -1.0/3.0

where the solutions are

On the right you can find the implementation and the validation of the

numerical solutions with respect to the exact solutions.

// Define input data

a = 3; b = -2; c = -1/3;

// Compute delta

Delta = b^2-4*a*c;

// Compute solutions

x1 = (-b+sqrt(Delta))/(2*a);

x2 = (-b-sqrt(Delta))/(2*a);

// Display the solutions

disp(x1); disp(x2);

 0.8047379

 - 0.1380712

// Exact solutions

x1e = (1+sqrt(2))/3

x2e = (1-sqrt(2))/3

// Compute differences between solutions

diff_x1 = abs(x1-x1e)

diff_x2 = abs(x2-x2e)

x1e =

 0.8047379

x2e =

 - 0.1380712

diff_x1 =

 0.

diff_x2 =

 0.

Scilab as a Calculator www.openeering.com page 12/12

Step 19: Concluding remarks and References

In this tutorial we have introduced to the user Scilab as a basic calculator,

in order to make him/her comfortable with Scilab basic operations.

1. Scilab Web Page: www.scilab.org.

2. Openeering: www.openeering.com.

Step 20: Software content

To report a bug or suggest some improvement please contact Openeering

team at the web site www.openeering.com.

Thank you for your attention,

Anna Bassi, Manolo Venturin

SCILAB AS A CALCULATOR

Main directory

license.txt : the license file

example_calculator.sce : examples in this tutorial

http://www.scilab.org/
http://www.openeering.com/
http://www.openeering.com/

