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1. Introduction 

Text mining is a relatively new research field whose main concern is to develop effective 
procedures able to extract meaningful information - with respect to a given purpose - from 
a collection of text documents. There are many contexts where large amounts of 
documents have to be managed, browsed, explored, categorized and organized in such a 
way that information we are looking for can be accessed in a fast and reliable way. Let us 
simply think to the internet, which probably is the largest and the most used library we 
know today, to immediately understand why the interest around the text mining has 
increased so much during the last two decades. 
A reliable document classification strategy can help in information retrieval, to improve the 
effectiveness of a search engine for example, but it can be also used to automatically 
understand if an e-mail message is spam or not. 
Scientific literature proposes many different approaches to classify texts: it is sufficient to 
perform a web search to find out a large variety of papers, forums and sites discussing 
about this topic. 
The subject is undoubtedly challenging for researchers who have to consider different and 
problematic aspects coming out when working with text documents and natural language. 
Usually texts are unstructured, they have different lengths and they are written in different 
languages. Different authors usually write on different topics, with their own styles, 
lexicons, vocabularies and jargons, just to highlight some issues. The same concept can 
be expressed in several different ways. As an extreme case, the same sentence can be 
graphically rendered in different ways: 
 

You are welcome! 
 

U @r3 w31c0m3! 

 
This strategy can be used to cheat less sophisticated e-mail spam filters, which probably 
are not able to correctly categorize a received message and waste it. Some filters are 
based on simple algorithms which do not consider the real meaning of a message but they 
just look the single words inside, one at a time. The search of an exhaustive and exact 
solution to text mining problem is extremely difficult, or practically impossible. 
Many mathematical frames have been developed for text classification: naïve Bayes 
classifiers, supervised and unsupervised neural networks, learning vector machines and 
clustering techniques are just a short - and certainly not complete - list of possible 
approaches which are commonly used in this field. They have both advantages and 
disadvantages. For example, some of them usually ensure a good performance but they 
have to be robustly trained in advance using predefined categories: other ones do not 
require a predefined list of categories, but they are less effective. For this reason the 
choice of a specific strategy is often tailored on the categorization problem that has to be 
solved. 
In spite of their differences, all text categorization approaches have however a first 
common problem to solve: first text has to be processed to extract the main features 
contained inside. This operation erases the “superfluous” from documents, retrieving only 
the most relevant information: the categorization algorithm will therefore work only with a 
series of features characterizing the document. This operation has a fundamental role and 
it can be lead to unsatisfactory results if it has not been conducted in an appropriate way. 
Another crucial aspect of data mining techniques is the postprocessing and summarization 
of results, which have to be read and interpreted by a user. 
This means that the faster and the most effective data mining algorithm is useless if 
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improperly fed or if results cannot be represented and interpreted easily. 
Our personal interest for these techniques was born some weeks ago when reading the 
last issue of the EnginSoft newsletter. In a typical newsletter issue there usually are many 
contributions of different kinds: there are papers presenting case studies coming from 
several industrial sectors, there are interviews, corporate and software news and much 
more. Sometimes there are also paper discussing “strange” topics, for the CAE 
community, as probably this one may seem to be. 
A series of questions came out. Does the categorization used in the newsletter respect a 
real structure of documents or is it simply due to an editorial need? Can we imagine a new 
categorization based on other criteria? Can we discover categories without knowing them 
a-priori? Can we finally have a representation of this categorization? And finally, can we 
have a deeper insight into our community? 
We decided to use the EnginSoft newsletters (see [3]) and extract all English articles, 
starting from the first issue up to the last one. In this way we built the “corpus”, as it is 
usually called by the text miners community, that is the set of text documents that have to 
be considered.  
The first issues of the newsletter were quite completely written in Italian, but English 
contributions occupy the most of pages in the last years. This certainly reflects the 
international growth of EnginSoft. The corpus was finally composed by 248 plain text 
documents of variable lengths. 
The second step we performed was to set up a simple text mining procedure to find out 
possible categorizations of corpus, taking into account two fundamental aspects. First we 
have to consider that we do not have any a-priori categorization. Second problem is that 
the corpus cannot be considered as “large” but, on the contrary, probably too poor to have 
clear and robust results. 
We finally decided to use an unsupervised self organizing map (SOM) as a tool to discover 
possible clusters of documents. This technique has the valuable advantage to not require 
any predefined classification and certainly to allow a useful and easily readable 
representation of a complex dataset, through some two-dimensional plots. 
The paper concludes with a funny application of a Markov chain, used in this case to 
automatically write apparently “meaningful” text. 

 

Figure 1: This image has been generated starting from the text of the EnginSoft Flash of the Year 7 
n°1 issue and the tool available in [3]. 



A text classification method in Scilab 

www.openeering.com page 4/12 

2. Preprocessing the corpus 

It easy to understand that one of the difficulties that can arise when managing text, looking 
one-word-at-a-time and disregarding for simplicity all the aspects concerning lexicon, is 
that we could consider as “different” words which conceptually can have the same 
meaning. As an example, let us consider the following words which can appear in a text; 
they can be all summarized in a single word, such as “optimization”: 
 

optimization, optimizing, optimized, optimizes, optimization, optimality. 

 
It is clear that a good preprocessing of a text document should recognize that different 
words can be grouped under a common root (also known as stem). This capability is 
usually obtained through a process referred to as stemming and it is considered 
fundamental to make text mining more robust. Let us imagine launching a web search 
engine with the keyword “optimizing”. We probably would like that documents containing 
the words “optimization” or “optimized” are also considered when filling a results list. The 
question is that probably the real goal of our research is to find out all the documents 
where optimization issues are discussed. 
The ability of associating a word to a root is certainly difficult to codify in a general manner. 
Also in this case there are many strategies available: we decided to use the Porter 
stemming approach (it is one of the most used stemming technique for processing English 
words: see paper in [5]) and apply it to all words composed by more than three letters. 
If we preprocess the words listed above with the Porter stemming algorithm the result will 
be always the stem “optim”. It clearly does not have any meaning (we cannot find “optim” 
in an English dictionary) but this does not represent an issue for us: we actually need “to 
name” in a unique way the groups of words that have the same meaning. 
Another ability that a good preprocessing procedure should have is to remove the so-
called stop words, that is, all words which are used to build a sentence in a correct way, 
according to the language rules, but they usually do not significantly contribute to 
determine the meaning of the sentence. Lists of English stop words are available on the 
web and they can be easily downloaded (see [2]): they contains words such as “and”, “or”, 
“for”, “a”, “an”, “the”, etc… 
In our text preprocessor we decided to also insert a procedure that cuts out all the 
numbers, the dates and all the words made of two letters or less; this means that words 
such as “2010” or “21th” and “mm”, “f”, etc… are not considered. Also mathematical 
formulas and symbols are not taken into consideration. 

3. Collect and manage information 

The corpus has to be preprocessed to produce a sort dictionary, which collects all the 
stems used by the community; then, we should be able to find out all the most interesting 
information describing a document under exam to characterize it. 
It’s worth to mention that the dictionary resulting from the procedure described above 
using the EnginSoft newsletters is composed by around 7000 stems. Some of them are 
names, surnames and acronyms such as “CAE”. 
It immediately appears that a criterion to judge the importance of a stem in a document 
within a corpus. To this purpose we decided to adopt the so–called tf-idf coefficient, term 
frequency – inverse document frequency, which takes into account both the relative 
frequency of a stem in a document and the frequency of the stem within the corpus. It is 
defined as: 
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where the subscripts  and  stand for a given word and a given document respectively in 
the corpus  - done by  documents - while  represents the number of times that the 

word  appears in the -th document. This coefficient allows us to translate words into 
numbers. 
In Figure 2 the corpus has been graphically represented, plotting the matrix containing the 
non-zero tf-idf coefficients computed for each stem, listed in columns, as they appear while 
processing the documents, listed in rows. The strange profile of the non-zero coefficients 
in the matrix is obviously due to this fact: it is interesting to see that the most used stems 
appear early on while processing documents, and that the rate of dictionary growth - that is 
the number of new stems that are added to the dictionary by new documents - tends to 
gradually decrease. This trend does not depend, on average, on the order used in 
document processing: the resulting matrix is always denser in the left part and sparser on 
the lower-right part. Obviously, the top-right corner is always void. 
The matrix in Figure 2 represents a sort of database which can be used to accomplish a 
document search, according to a given criterion: for example, if we wanted to find out the 
most relevant documents with respect to the “optimization” topic, we should simply look for 
the documents corresponding to the highest tf-idf of the stem optim. The results of this 
search are collected in Table 1, where the first 5 documents are listed. 
 

Document title 
Published in 

the Newsletter 
tf-idf of stem 

“optim” 

The current status of research and applications in 
Multiobjective Optimization. 

Year 6, issue 2 0.0082307 

Multi-objective optimization for antenna design. Year 5, issue 2 0.0052656 

Third International Conference on Multidisciplinary 
Design Optimization and Applications. 

Year 6, issue 3 0.0050507 

modeFRONTIER at TUBITAK-SAGE in Turkey. Year 5, issue 3 0.0044701 

Optimal Solutions and EnginSoft announce 
Distribution Relationship for Sculptor Software in 
Europe. 

Year 6, issue 3 0.0036246 

Table 1: The results of the search for “optimization” in the corpus using the tf-idf coefficient. 

 
In Table 2 we list the stem which register the highest and the lowest (non zero) tf-idf in the 
dictionary, together with the documents where they appear. More generally, it is interesting 
to see that high values of tf-idf are obtained by words that frequently appear in a short 
document, but that globally are not used at all (see the acronym “VPS”). On the contrary, 
low values of this coefficient are obtained by common words in the corpus (see “design”) 
that are infrequently used in long documents. 
In Figure 3 the histogram of the tf-idf coefficient and the empirical cumulate density 
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function are plotted. It can be seen that the distribution is strongly left-skewed: this means 
that there are many stems that are largely used in the corpus, having in this way very low 
values of tf-idf. For this reason the logarithmic scale has been preferred to have a better 
representation of data. 
 

Document title 
Published in 

the Newsletter 
Stem tf-idf 

VirtualPaintShop. 
Simulation of paint processes of car bodies. 

Year 2, issue 4 VPS 
Max 

0.0671475 

Combustion Noise Prediction in a Small Diesel 
Engine Finalized to the Optimization of the 
Fuel Injection Strategy 

Year 7, issue 3 design 
Min (non-

zero) 
0.0000261 

Table 2: Stems with the maximum and the minimum (non zero) tf-idf respectively found in the corpus 
are reported in the table together with the document title where they appear. 

 

 

Figure 2: A matrix representation of the non-zeros tf-idf coefficients within the corpus. The matrix 
rows collect the text files sorted in the same order as they are processed, while the columns collect 
the stems added to the dictionary in the same order as they appear while processing the files. 

 

 

Figure 3: The histogram (left) and the empirical cumulative distribution (right) of the tf-idf. The 
distribution has clearly a high skewness: the large majority of stems has a low tf-idf. For this reason 
the logarithmic scale has been used in the graphs. 
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4. A text classification using Self Organizing Maps 

The Self Organizing maps (SOMs) are neural networks which have been introduced by 
Teuvo Kohonen (see for example [6]). One of the most valuable characteristics of such 
maps is certainly the fact that they allow a two-dimensional representation of multivariate 
datasets, preserving the original topology; this simply means that the map does not alter 
the distances between records in the original space when projecting them in the two-
dimensional domain. For this reason they can be used to navigate multidimensional 
datasets and to detect groups of records, if present. A second interesting characteristic of 
these maps is that they are based on an unsupervised learning: this is the reason why, 
sometimes, such maps are said to learn from the environment. They do not need any 
imposed categorization or classification of data to run, but they simply project the dataset 
“as it is”. The mathematical algorithm behind this maps is not really difficult to understand 
and therefore to implement; however, the results have however to be graphically 
represented in such a way that they can be easily accessed by the user. This is probably 
the most difficult task when developing a SOM: fortunately Scilab has a large set of 
graphical functions which can be called to build complex outputs, such the one in Figure 6. 
A common practice suggests using a honey-comb representation of the map, where each 
hexagon stands for a neuron: colors and symbols are used to draw a result (e.g. a dataset 
component or the number of records in a neuron). 
The user has to set the dimensions of the map, choosing the number of neurons along the 
horizontal and the vertical directions (see Table 3, where the set up of our SOM is briefly 
reported) and the number of training cycles that have to be performed. Each neuron has a 
prototype vector (that is a vector with the same dimension of the designs in the dataset) 
which should be representative, once the net has been trained, of all the designs 
pertaining to that neuron. Certainly the easiest way to initialize the prototypes is to choose 
random values for all their components, as we did in our case. 
The training consists of two phases: the first one is called “rough phase”, the second one 
“fine tuning” and they usually have to be done with slightly different set-ups to obtain the 
best training, but operationally, they do not present any difference. During the training a 
design is submitted to the net and assigned to the neuron whose prototype vector is 
closest to the design itself; then, the prototypes of the neurons in the neighborhood are 
updated trough an equation which rules the strength of the changes according, for 
example, to the training iteration number and to the neuron distances. 
During a training cycle all designs have to be passed to the net, always following a 
different order of submission to ensure a more robust training. There is a large variety of 
updating rules available in the literature which can be adopted according to the specific 
problem. We decided to use a Gaussian training function with a constant learning factor 
which is progressively damped with the iteration number. This leads to a net which 
progressively “freezes” to a stable configuration. This can be seen as the solution of a 
nonlinear projection problem of a multivariate dataset on a two dimensional space.  
At the end of training phase, each design in the dataset has a reference neuron and each 
prototype vector should summarize at best the designs in their neuron. For this reason the 
prototype vectors can be thought as a “summary” of the original dataset and used to 
graphically render information through colored pictures. 
One of the most frequent criticisms to SOMs that we hear within the engineering 
community is that these maps do not provide numbers but rather colored pictures that only 
“gurus” can interpret. We are pretty convinced that this is a wrong feeling; these maps, and 
consequently the colored pictures used to present results, are obtained with a precise 
algorithm such those used in other fields. As an example, let us remember that even 
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results coming from a finite element simulation of a physical phenomenon are usually 
presented through a plot (e.g.: stress, velocity or pressure fields in a domain) and that they 
can change as the model set up changes (e.g.: mesh, time integration step…) and that 
therefore they have to be always interpreted by a skilled engineer. 
We submitted the dataset with the tf-idf coefficients and ran a SOM training with the setup 
summarized in Table 3. To avoid that stems with very high and too low values play a role 
in the SOM training, we decided to keep only those belonging to the interval [0.0261 - 
2.6484]∙10-3: this interval has been chosen starting from the empirical cumulative 
distribution reported in Figure 3 and looking for the tf-idf corresponding to the 0.1 and the 
0.8 probability respectively. In this way the extremes, which could be also due to typos, are 
cancelled out from the dataset, ensuring a more robust training. The dictionary decreases 
from 7000 to around 5000 stems, which are considered to be enough to describe 
exhaustively the corpus, keeping quite common words and preserving all the peculiarities 
of documents. 
Once the SOM has been trained, we decided to use the “distance matrix” as the best tool 
to “browse” the results. The so-called D-matrix is a plot of the net where the color scale is 
used to represent the mean distance between the neurons’ prototype vector and their 
neighbors (red means “far”, blue means “close”). In this way one can understand how the 
dataset is distributed on the net, with just a glance, and also detect clusters of data, if any. 
This graphical tool can be also enriched with other additional information, plotted together 
with the color scale, giving the possibility to represent the dataset in a more useful way. An 
example of this enriched versions are given in Figures 5 and 6. 
 

Grid  Rough Phase Fine Phase 

Number of horizontal neurons = 
15 

Training = sequential nCycles = 50 nCycles = 10 

Number of vertical neurons = 15 Sample order = random iRadius = 4 iRadius = 1 

Grid initialization = random Learning factor = 0.5 fRadius = 1 fRadius = 1 

Scaling of data = no Training function = 
gaussian 

  

Table 3: The setup used for the SOM training phase. 

 

 

Figure 4: The quantization error plotted versus the number of the training iterations. 

Looking at the plot of the D-matrix reported in Figure 5 one can conclude that there are 
mainly two large groups of papers (the two blue zones), which are not however sharply 
separated, and many outliers. It is not easy to identify in a unique way other clusters of 
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papers, being too high the distance between neurons’ prototypes outside the blue zones. 
The dimension of the white diamonds superimposed to the neurons is proportional to the 
number of documents which pertains to the neuron. It is clear that there are many files that 
fall in one of these two groups. 
Looking to the map drawn in Figure 6, we can try to understand what is the main subject 
discussed by papers in these group. We actually decided to report the stems which gain 
the highest tf-idf in the prototype vectors, providing in this way two “keywords” that identify 
papers falling in the neurons. In the first group, positioned on the left-upper part of the 
map, certainly there are documents discussing about EnginSoft and the international 
conference. Documents discussing about optimization and computational fluid dynamics 
belong to the second group, positioned on the central-lower part of the net, actually stems 
such as “optim” and “cfd” often gain the highest tf-idf. 
It is interesting to see that some important relations and links appear in the net. For 
example, the lower-right corner is occupied by documents mainly discussing about 
laminates and composite materials. Going up in the net, following the right border, we 
meet papers on casting and alloys. On the top corner, contributions by our Turkish partner, 
Figes, have found place. Moving to the left we meet stems such as “technet”, “allianc” and 
“ozen” that remember us the great importance that EnginSoft gives to the international 
relationships and to the “net”. We can also find several times “tcn”, “cours” and “train”, 
which can be certainly due to the training activities held and sponsored by EnginSoft in the 
newsletter. In the upper left corner the stem “race” can be found: the competition corner - 
we could say - because contributions coming from the world of races (by Aprilia, Volvo and 
others) fall here. 
Figure 6 certainly gives us a funny but valuable view on our community. 
Another interesting output which can be plotted is certainly the position that documents 
written by an author assume in the net. This could be useful to detect common interests 
between people of a numerous community. This kind of output is summarized in Figure 7, 
where, starting from left to right, the position of documents by Stefano Odorizzi, by Akiko 
Kondoh and by Silvia Poles are reported. It can be seen that our CEO contributions, the 
“EnginSoft Flash” at the beginning of all the issues, fall in the first group of documents, 
where EnginSoft and its activities are the focus. 
Akiko’s contributions are much more spread on the net: some of them fall in the left-lower 
portion that could be viewed as the Japanese corner, some other between the two main 
groups. Finally, we could conclude that Silvia’s contributions mainly focus on PIDO and 
multi-objective optimization topics. 
In Figure 8 shows the prototype vector of a neuron in the first group of documents. On the 
right side of the same picture, the first 10 stems which register the highest values of tf-idf 
are reported. These stems could be read as keywords that concisely define documents 
falling in the neuron. 
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Figure 5: The D-matrix. The white diamonds give evidence of the number of files pertaining to the 
neuron. Two groups of documents (blue portions) can be easily detected. 

 

Figure 6: The D-matrix. For each neuron the first two stems with highest tf-idf as given by the 
prototype vectors are reported, in the attempt to highlight the main subject discussed by articles 
falling in the neurons. 

 

Figure 7: The contributions by Stefano Odorizzi (left), by Akiko Kondoh (middle) and by Silvia Poles 
(right) as they fall in the SOM (see white diamonds). 
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Figure 8: The prototype vector of the pointed neuron in the net: the tf-idf is plotted versus the stems 
in the dictionary. On the right the first 10 highest tf-idf stems are displayed. The horizontal red line 
gives the lowest tf-idf registered by the 10th stem. 

5. An ergodic Markov chain writes meaningful text 

To conclude this work we decided to play with words. We implemented a simple Markov 
chain to randomly generate text which should have, at a first glance, some meaning. This 
is another technique which could be used to cheat the spam filters which automatically 
tries to understand meaning of messages. Actually, the generated text sounds, in some 
portions at least, as a natural language text: an accurate reading done by a human being 
however can unmask the trick easily. 
Markov chains are known to be an extremely powerful and versatile mathematical theory 
used in many fields and due to Andrey Markov, a Russian mathematician. In our case, the 
basic idea is to train a net whose nodes are words, coming out from a reference text. The 
“weight” of a connection is related to the probability that the node (word) is followed by the 
connected node (word). These weights are computed during the training of the chain and 
they reflect in some sense the writing style. 
Once the training has been completed the chain can be run automatically, just choosing a 
starting node; it is simply necessary to randomly choose the next node (word) according to 
the probability associated to the node connections. In this way, it is possible to generate 
always different texts which can seem to have a certain meaning. Obviously, the result 
strongly depends on the training text, which should be long enough and rich of different 
words. 
We developed a Scilab procedure that uses a Markov chain to this aim. We collected all 
the “EnginSoft Flash” by our CEO in a single text file to produce the training set. Finally, 
we started the chain to randomly generate a text; a result can be read as follows: 
 
The international conference and peace, standard and developments and products 
including car running on the finite element methods. Besides his 20 years, and science, 
the world congress, it is the ansys italian conference and our knowledge at berkeley, at the 
simulation, and projects and technology providers in april we encourage our call for our 
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knowledge in its realisation. 
Engineers enterprises and system modelling study of the expected spin-off enginsoft 
france showcased its development prospects for computational technologies and related 
readings. Moreover, it has identified a busy time include an event for example, 
manufacturing, for a whole team of the congress will publish research labs. Taking request 
for enginsoft, modefrontier users' meeting to welcome training on-line courses on the 
world's leading cae/cad model deformation and the positive conclusion of biomechanics, 
their views on cae and that enginsoft and coordinator. 
 

 

Figure 9: The Markov chain can be thought as a sparse matrix where rows and columns are the 
words in the dictionary and the stored values are the weight of the links. 

6. Conclusions 

In this work we have presented a text mining approach mainly based on the use of a self 
organizing map. We have considered the English articles published on old issues of the 
EnginSoft newsletters and preprocessed them adopting some well-known methodologies 
in the field of text mining.  
The dataset has been used to train a self organizing map: results have been graphically 
presented and some consideration on the documents set have been proposed. The work 
ends with a funny implementation of a Markov chain which automatically and randomly 
generates text, which, at a first glance, could appear as meaningful. 
All this work has been performed using Scilab scripts, expressly written for this aim. 

7. References 

[1] http://www.scilab.org/ to have more information on Scilab. 
[2] http://www.ranks.nl/resources/stopwords.html to have an exhaustive list of the English 
stop words. 
[3] http://newsletter.enginsoft.it/ to download the pdf version of the EnginSoft newsletters. 
[4] http://www.wordle.net/ to generate funny images starting from text. 
[5] http://tartarus.org/~martin/PorterStemmer/def.txt 
[6] http://www.cis.hut.fi/teuvo/ 

http://www.opensource.org/
http://newsletter.enginsoft.it/
http://tartarus.org/~martin/PorterStemmer/def.txt
http://www.cis.hut.fi/teuvo/

