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1. Introduction 

In this paper we would like to show how it is possible to develop a simple and effective 
finite element solver to deal with thermo-mechanical problems. In many engineering 
situations it is necessary to solve heat conduction problems, both steady and unsteady 
state, to estimate the temperature field inside a medium and, at the same time, compute 
the induced strain and stress states. 
To solve such problems many commercial software tools are available. They provide user-
friendly interfaces and flexible solvers, which can also take into account very complicated 
boundary conditions, such as radiation, and nonlinearities of any kind, to allow the user to 
model the reality in a very accurate and reliable way. 
However, there are some situations in which the problem to be solved requires a simple 
and standard modeling: in these cases it could be sufficient to have a light and dedicated 
software able to give reliable solutions. Moreover, other two desirable features of such 
software could be the possibility to access the source to easily program new tools and, last 
but not least, to have a cost-and-license free product. This turns out to be very useful 
when dealing with the solution of optimization problems. 
Keeping in mind these considerations, we used the Scilab platform and the gmsh (which 
are both open source codes: see [1] and [2]) to show that it is possible to build tailored 
software tools, able to solve standard but complex problems quite efficiently. 
 

Feature Commercial codes In-house codes 

Flexibility 

It strongly depends on the code. 
Commercial codes are thought to be 
general purpose but rarely they can 
be easily customized. 

In principle the maximum flexibility 
can be reached with a good 
organization of programming. 
Applications tailored on a specific 
need can be done. 

Cost 

The license cost strongly depends 
on the code. Sometimes 
maintenance has to be paid to 
access updates and upgrades. 

No license means no costs, 
except those coming out from the 
development. 

Numerical and 
math knowledge 

required 

No special skills are required even if 
a smart use of simulation software 
may require engineering or scientific 
background. 

A certain background in 
mathematics, physics and 
numerical techniques is obviously 
necessary. 

Programming skills Usually no skills are necessary. 

It depends on the language and 
platform used and also on the 
objectives that lead the 
development. 

Performance 

Commercial codes use the state-of –
the-art of the high performance 
computing to provide to the user 
very efficient applications. 

The performance strongly 
depends on the way the code has 
been written. 

Reliability of results 

Usually commercial codes do not 
provide any warranty on the 
goodness of results, even though 
many benchmarks are given to 
demonstrate the effectiveness of the 
code. 

A benchmarking activity is 
recommended to debug in-house 
codes and to check the goodness 
of results. This could take a long 
time. 

Table 1: A simple comparison between commercial and in-house software is made in this table. 
These considerations reflect the author opinion and therefore the reader could not agree. The 
discussion is open. 
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Of course, to do this it is necessary to have a good knowledge basis in finite element 
formulations but no special skills in programming, thanks to the ease in developing code 
which characterizes Scilab. 
In this paper we first discuss about the numerical solution of a parabolic partial differential 
equation which governs the unsteady state heat transfer problem, and then a similar 
strategy for solution of elastostatic problems will be presented. These descriptions are 
absolutely general and they represent a starting point for more complex and richer models.  

2. The thermal solver 

The first step to deal with is to implement a numerical technique to solve the unsteady 
state heat transfer problem described by the following partial differential equation: 
 

  (1) 

 
which has to be solved in the domain , taking into account the boundary conditions, 
which apply on different portions of the boundary ( ). They could be of 

Dirichlet, Neumann or Robin kind, expressing a given temperature , a given flux  or a 
convection condition with the environment: 
 

  (2) 

 

being  the unit normal vector to the boundary and the upper-lined quantities known 

values at each time. The symbols “ ” and “ ” are used to indicate the divergence and the 
gradient operator respectively, while  is the unknown temperature field. The medium 
properties are the density , the specific heat  and the thermal conductivity  which could 
depend, in a general case, on temperature. The term  on the right hand side represents 
all the body sources of heat and it could depend on both space and time. 
For sake of simplicity we imagine that all medium properties are constant; in this way the 
problem comes out to be linear, dramatically simplifying the solution. 
For the solution of the equations in (1) we decide to use a traditional Galerkin residual 

approach. To this aim, it is necessary to introduce a virtual field  and consider the 
weighted version of equation (1): 
 

  (3) 

 
The divergence theorem can be invoked to rewrite this equation in a more treatable way. 
Actually, we have: 
 

  (4) 

The integral over  involves the boundary flux. Equation (3) can be rewritten as: 
 

 (5) 
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In order to solve numerically the above equation it is necessary to introduce a 

discretization of the domain  and choose appropriate test functions. 
Equations (5) can be rewritten, once the discretization has been introduced, as the 
appropriate sum over the elements of certain contributions that can be computed 
numerically by means of a standard Gauss integration. Then, we obtain, in matrix form, the 
following expression: 
 

  (6) 
 

where the symbols  and  are used to indicate matrices and vectors. 
A classical Euler scheme can be implemented. If we assume the following approximation 
for the first time derivative of the temperature field: 
 

  (7) 

 
being  and  the time step, we can rewrite, after some manipulation, equation 
(6) as: 
 

.  (8) 

 

It is well known (see [4]) that the value of parameter  plays a fundamental role. If we 
choose  an explicit time integration scheme is obtained, actually the unknown 
temperature at step n+1 can be explicitly computed starting from already computed or 
known quantities. 
Moreover, the use of a lumped finite element approach leads to a diagonal matrix ; this 
is a desirable feature, because the solution of equation (8), which passes through the 
inversion of , reduces to simple and fast computations. The gain is much more evident 

if a non-linear problem has to be solved, when the inversion of  has to be performed at 
each integration step. 

Unfortunately, this scheme is not unconditionally stable; the time integration step  has 
actually to be less than a threshold which depends on the nature of the problem and on 
the mesh. In some cases this restriction could require very small time steps, giving high 
solution time. 
On the contrary, if , an implicit scheme comes out from (8), which can be specialized 
as: 
 

  (9) 

 
In this case the matrix on the left involves also the conductivity contribution, which cannot 
be diagonalized trough a lumped approach and therefore the solution of a system of linear 
equations has to be computed at each step. The system matrix is however symmetric and 
positive definite, so a Cholesky decomposition can be computed once for all and at each 
integration step the backward process, which is the less expensive from a computational 
point of view, can be performed. 
This scheme has the great advantage to be unconditionally stable: this means that there is 
no restriction on the time step to adopt. Obviously, the larger the step, the larger the errors 
due to the time discretization introduced in the model, according to (7). 

In principle all intermediate values for  are possible, considering that the stability of Euler 
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scheme is guaranteed for , but usually the most used version are the full explicit or 
implicit one. 
In order to test the goodness of our application we have performed many tests and 
comparisons. Here we present the simple example depicted in Figure 1. Let us imagine 
that in a long circular pipe a fluid flows with a temperature which changes with time 
according to the law drawn in Figure 1, on the right. We want to estimate the temperature 
distribution at different time steps inside the medium and compute the temperature in point 
P. 
It is interesting to note that for this simple problem all the boundary conditions described in 
(2) have to be used. A unit density and specific heat for the medium has been taken, while 
a thermal conductivity of 5 has been chosen for this benchmark. The environmental 
temperature has been set to 0 and the convection coefficient to 5. 
As shown in the following pictures, there is a good agreement between the results 
obtained with Ansys Workbench and our solver. 
 
 

         

Figure 1: In view of the symmetry of the pipe problem we can consider just one half of the structure 
during the computations. A null normal flux on the symmetry boundary has been applied to model 
symmetry as on the base line (green boundaries); while a convection condition has been imposed on 
the external boundaries (blue boundaries). Inside the hole a temperature is given according to the 
law described on the right. 
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Figure 2: Temperature field at time 30 The Ansys Workbench (left) and our solver (right) results. A 
good agreement can be seen comparing these two images. 

 
 

 

Figure 3: Temperature field in point P versus time, comparison between Ansys Workbench (red) and 
our solver (blue) results. Also in this case a good agreement between results is achieved. 
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3. The structural solver 

If we want to solve a thermo-structural problem (see [3] and references reported therein) 
we obviously need a solver able to deal with elasticity equations. We focus on the simplest 
case that is two dimensional problems (plane strain, plane stress and axi-symmetric 
problems) with a completely linear, elastic and isotropic response. We have to take into 
account that a temperature field induces thermal deformations inside a solid medium. 
Actually: 
 

  (10) 
 

where double index i indicates that no shear deformation can appear. The  represents 
the reference temperature at which no deformation is produced inside the medium. 
Once the temperature field is known at each time step, it is possible to compute the 
induced deformations and then the stress state. 
For sake of simplicity we imagine that the loads acting on the structure are not able to 
produce dynamic effects and therefore, if we neglect the body forces contributions, the 
equilibrium equations reduce to: 
 

      or, with the indicial notation          (11) 

 

The elastic deformation  can be computed as the difference between the total and the 
thermal contributions as: 
 

  (12) 
 

which can be expressed in terms of the displacement vector field  as: 
 

       or, with the indicial notation     .  (13) 

 
A linear constitutive law for the medium can be adopted and written as: 
 

   (14) 
 

where the matrix  will be expressed in terms of  and  which describe the elastic 
response of the medium. Finally, after some manipulation involving equations (11), (13) 
and (14), one can obtain the following governing equation, which is expressed in terms of 

the displacements field  only: 
 

  (15) 
 
As usual, the above equation has to be solved together with boundary conditions, which 

typically are of Dirichlet (imposed displacements  on ) or Neumann kind (imposed 
tractions  on ): 

 

  (16) 
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The Galerkin weighted residuals approach, described above for the heat transfer equation, 
can be used with equation (15) and a discretization of the domain can be introduced to 
numerically solve the problem. 
Obviously, we do not need a time integration technique anymore, being the problem static. 
We will obtain a system of linear equations characterized by a symmetric and positive 
definite matrix: special techniques can be exploited to take advantage of these properties 
in order to reduce the storage requirements (e.g. a sparse symmetric storage scheme) and 
to improve the efficiency (e.g. a Cholesky decomposition, if a direct solver is adopted). As 
for the case of thermal solver, many tests have been performed to check the accuracy of 
the results. Here we propose a classical benchmark involving a plate of unit thickness 
under tension with a hole, as shown in Figure 4. A unit Young modulus and a Poisson 
coefficient of 0.3 have been adopted to model the material behavior. Vertical 
displacements computed with Ansys and with our solver are compared in Figure 5: it can 
be seen that the two colored patterns are very similar and that maximum values are much 
closed (Ansys gives 551.016 and we obtain 551.014). In Figure 6 the tensile stress in y-
direction along the symmetry line AB is reported. It can be seen that there is a good 
agreement between the results provided by the two solvers. 
 
 

 

Figure 4: The holed plate under tension considered in this work. We have taken advantage from the 
symmetry with respect to x and y axes to model only a quarter of the whole plate. Appropriate 
boundary conditions have been adopted, as highlighted in blue. 
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Figure 5: The displacement in y direction computed with Ansys (left) and our solver (right). The 
maximum computed values for this component are 551.016 and 551.014 respectively. 

 
 

 

Figure 6: The y-component of stress along the vertical symmetry line AB (see Figure 4). The red line 
reports the values computed with Ansys while the blue one shows the results obtained with our 
solver. No appreciable difference is present. 
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4. Thermo-elastic analysis of a pressure vessel 

In the oil-and-gas industrial sector it happens very often to investigate the structural 
behavior of pressure vessels. These structures are used to contain gasses or fluids; 
sometimes also chemical reactions can take place inside these devices, with a consequent 
growth in temperature and pressure. 
For this reason the thin shell of the vessel has to be checked taking into account both the 
temperature distribution, which inevitably appears within the structure, and the mechanical 
loads. If we neglect the holes and the nozzles which could be present, the geometry of 
these structures can be viewed, very often, as a solid of revolution. Moreover, applied 
loads and boundary conditions reflect this symmetry and therefore it is very common, 
when applicable, to calculate a vessel using an axi-symmetric approach. 
In the followings we propose a thermo-mechanical analysis of the vessel depicted in 
Figure 7. The fluid inside the vessel has a temperature which follows a two steps law (see 
Figure 7, on the right) and a constant pressure of 1 [MPa]. We would like to know which is 
the temperature reached on the external surface and which is the maximum stress inside 
the shell, with particular attention to the upper neck. 
 

 

Figure 7: A simple sketch illustrates the vessel considered in this work. The revolution axis is drawn 
with the red dashed line and some dimensioning (in [m]) is reported. The nozzle on top is closed 
thanks to a cap which is considered completely bonded to the structure. The nozzle neck is not 
covered by the insulating material. On the right the fluid temperature versus time is plotted. A 
pressure of 1 [MPa] acts inside the vessel. 

 

Material 
Density 
[kg/m

3
] 

Specific heat 
[J/kg°C] 

Thermal 
conductivity 

[W/m°C] 

Young 
modulus 
[N/m

2
] 

Poisson 
ratio 
[---] 

Thermal expansion 
coeff. 
[1/°C] 

Steel 7850 434 60.5 2.0∙10
11

 0.30 1.2∙10
-5

 

Insulation 937 303 0.5 1.1∙10
9
 0.45 2.0∙10

-4
 

Table 2: Thermal and mechanical properties of the materials involved in the analysis. 
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We imagine that the vessel is made of common steel and that it has an external thermal 
insulating cover: the relevant material properties are collected in Table 2. 
When dealing with a thermo-mechanical problem it could be reasonable to use two 
different meshes to model and solve the heat transfer and the elasticity equations. 
Actually, if in the first case we usually are interested in accurate modeling the temperature 
gradients, in the second case we would like to have a reliable estimation of stress peaks, 
which in principle could appear in different zones of the domain. For this reason we 
decided to have the possibility to use different computational grids: once the temperature 
field is known, it will be mapped on to the structural mesh allowing in this way a better 
flexibility of our solver. 
In the case of the pressure vessel we decided to use a uniform mesh within the domain for 
the thermal solver, while we adopted a finer mesh near the neck for the stress 
computation. 
In Figure 8 temperature field at time 150 [s] is drawn: on the right a detail of the neck is 
plotted. It can be seen that the insulating material plays an important role, the surface 
temperature is actually maintained very low. As mentioned above a uniform mesh is 
employed in this case. 
In Figure 9 the radial (left) and the vertical (right) deformed shapes are plotted. In Figure 
10 the von Mises stress is drawn and, on the right, a detail in proximity of the neck is 
proposed: it can be easily seen that the mesh has been refined in order to better capture 
the stress peaks in this zone of the vessel. 

5. Conclusions 

In this work it has been shown how it is possible to use Scilab to solve thermo-mechanical 
problems. For sake of simplicity the focus has been posed on two dimensional problems 
but the reader has to remember that the extension to 3D problems does not require any 
additional effort from a conceptual point of view. 
Some simple benchmarks have been proposed to show the effectiveness of the solver 
written in Scilab. The reader should have appreciated the fact that also industrial-like 
problems can be solved efficiently, as the complete thermo-mechanical analysis of a 
pressure vessel proposed at the end of the paper. 
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Figure 8: The temperature field at time 150 [s] on the left and a detail of the neck on the right, where 
also the mesh used for the solution of the thermal problem has been superimposed. 

 

Figure 9: Radial (left) and vertical (right) displacement of the vessel. 

 

Figure 10: The von Mises stress and a detail of the neck, on the right, together with the structural 
mesh. 


