
Manual for the polyfit function

Javier I. Carrero (jicarrerom@unal.edu.co)

December 14, 2009

1 General description
Given a set of m (xi,yi) data points polyfit finds the n coefficients for

y = a0 +a1x+a2x2 + ...+anxn (1)

that best fit y(x) in the sense of minimizing the sum of the residuals
(
yi− ycalc

i
)2 where

ycalc
i represents the value calculated with eq. 1. Polynomial degree n is set as an input

argument of the function, main output of polyfit has two possible forms, the default
one is a Scilab polynomial representing eq. 1, but if the Mcomp input option is used
polyfit returns the coefficients in Matlab’s style, as a vector [an .. a1 a0].

2 Function arguments
The standard syntax is

[paj, ycalc, statpar] = polyfit(x, y, Mcomp, GraphChk,

pChar)

Input arguments (given m sets of data and a polynomial of degree n):

• x is a m component vector (column or row), each element in it represents a value
of the independent variable.

• y is a m component vector (column or row), each element in it represents a value
of the dependent variable.

• Mcomp (optional) if present Mcomp produces an output paj in the Matlab’s style,
i.e. a vector [an .. a1 a0]. To invoke this option write the optional argu-
ment as Mcomp = 'Y' .

• GraphChk (optional) if present produces a graphic in which the calculated values
of y are plotted against the perfect fit, i.e. against the ycalc=y line. To invoke
this option simply write the argument as GraphChk = 'Y'.

1



• pChar (optional) is an alternate character variable for polynomial in the output,
which is x by default, for example to obtain a polynomial in terms of s the
function must be called with pChar = 's'.

Output arguments (given m sets of data and a polynomial of degree n):

• paj in the default form is scilab polynomial object of degree n. To evaluate such
output the horner function must be used, for example to get the value of paj
with x=2.5 the call is horner(paj, 2.5). If the Matlab’s style was selected in
the input paj will have the form [an .. a1 a0].

• ycalc is a column vector with m elements corresponding to the y values calcu-
lated with eq. 1 applied to x.

• statpar is a vector with statistical parameters, statpar = [St Sr stdv r2]

where

– St: is defined as

St =
m

∑
i=1

(yi− ȳ)2 (2)

where ȳ is the average of y

– Sr: is the sum of the m residuals, defined as

Sr =
m

∑
i=1

(
yi− ycalc

i

)2
(3)

where ycalc
i comes from eq. 1 applied to xi.

– stdv: standard deviation, defined as(
St

m−1

)1/2

(4)

– r2: correlation coefficient, defined as

r2 =
St −Sr

St
(5)

– Syx: standard error, defined as

Syx =
(

Sr

m− (n+1)

)1/2

(6)

3 Example
Given the data

x_lst = [0 1 2 3 4 5]

y_lst = [2.1 7.7 13.6 27.2 40.9 61.1]

2



find the degree-3 polynomial that best fit the data in the form

y = a0 +a1x+a2x2 +a3x3. (7)

It is not necessary to recast the data. The command

polyfit(x_lst, y_lst, 3)

produces

2.2507937 + 3.3994709x + 1.2912698x^2 + 0.0759259x^3

Complete calling

[pol, yc, estad]=polyfit(x_lst, y_lst, 3)

produces

pol = 2.2507937 + 3.3994709x + 1.2912698x^2 + 0.0759259x^3

yc = [2.2507937 7.0174603 14.822222 26.120635 41.368254

61.020635]

estad = [2513.3933 3.3730159 22.420497 0.9986580 1.2986562]

For Matlab-like output and graphic comparison add Mcomp = 'Y' and GraphChk =

'Y', for example

polyfit(x_lst, y_lst, 3, Mcomp='Y', GraphChk='Y')

produces

0.0759259 1.2912698 3.3994709 2.2507937

and a graphic comparison.

4 Mathematical background
Fitting of eq. 1 is based on the minimization of the objective function fobj defined as

fobj =
m

∑
i=1

[
yi−

(
a0 +a1xi +a2x2

i + ...+anxn
i
)]2

(8)

meaning that fobj = fobj (a0,a1, . . . ,an). But instead of using eq. 8 the problem recast
in the generalized form

y = a0z0 +a1z1 +a2z2 + ...+anzn (9)

making z0 (x) = 1, z1 (x) = x, z2 (x) = x2, ..., zn (x) = xn, this way the minimization
based on

∂ fobj

∂ai
= 0 (10)

3



for i = 0,1,2, . . . ,n generates a matrix equation of the form(
ZTZ

)
A =

(
ZTY

)
(11)

where the unknown values of ai grouped in A = [a0,a1, . . . ,an]
′ depend on Y = [y1,y2, . . . ,ym]′

and

Z =


z10 z11 z12 · · · z1n
z20 z21 z22 · · · z2n
z30 z31 z32 · · · z3n
...

...
...

...
zm0 zm1 zm2 · · · zmn

 . (12)

For further explanation see Chapra and Canale’s "Numerical Methods for Engineers,
5th ed., ch. 17 (McGraw-Hill, 2005).

Solution of eq. 11 using Scilab’s \ operator is not advisable because the sums of
powers of x tend to produce terms in the matrix with notorious differences in order
of magnitude, making unreliable the matrix inversion. Instead the QR factorization is
used to transform eq. 11 into

RA = Q
(
ZTY

)
(13)

where R is an upper triangular matrix, meaning that the ai values can be calculated
recursively from an down to a0, with the definitions

B = Q
(
ZTY

)
= [b0,b1, . . . ,bn]

′ (14)

and

R =



r0,0 r0,1 r0,2 · · · r0,n
0 r1,1 r1,2 · · · r1,n
0 0 r2,2 · · · r2,n
...

...
0 · · · 0 rn−1,n−1 rn−1,n
0 · · · 0 0 rn,n


(15)

the an coefficient comes from
an = bn/rn,n,

the an−1 coefficient comes from an

an−1 = (bn−1− rn−1,nan)/rn−1,n−1,

and so on, down to a0 and filling the A variable.

4


